
Queue Load / Unload Utility for IBM MQ
User Guide

Version 9.1.1

10th January 2023

Paul Clarke

MQGem Software Limited
support@mqgem.com

Queue Load / Unload Utility for IBM MQ

Take Note!

Before using this User's Guide and the product it supports, be sure to read the general information

under "Notices”

Twenty-seventh Edition, January 2024

This edition applies to Version 9.1.1 of Queue Load / Unload Utility for IBM MQ and to all subsequent

releases and modifications until otherwise indicated in new editions.

(c) Copyright MQGem Software Limited 2015, 2024. All rights reserved.

ii

Queue Load / Unload Utility for IBM MQ

Notices

The following paragraph does not apply in any country where such provisions are inconsistent with

local law.

MQGEM SOFTWARE LIMITED PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore

this statement may not apply to you.

The information contained in this document has not be submitted to any formal test and is distributed

AS IS. The use of the information or the implementation of any of these techniques is a customer

responsibility and depends on the customer's ability to evaluate and integrate them into the

customer's operational environment. While each item has been reviewed by MQGem Software for

accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained

elsewhere. Customers attempting to adapt these techniques to their own environments do so at their

own risk.

The following terms are trademarks of the International Business Machines Corporation in the United

States and/or other countries:

 IBM MQ

 IBM

 AIX

 IBM I

 MVS

 z/OS

The following terms are trademarks of the Microsoft Corporation in the United States and/or other

countries:

 Windows 95,98,Me

 Windows NT, 2000,XP, 7, 8, 10, 11

 Powershell

iii

Queue Load / Unload Utility for IBM MQ

Table of Contents

Notices... iii

Table of Contents.. iv

History... viii

SupportPac.. viii
MQGem Product.. viii

Chapter 1. Queue Load / Unload Utility for IBM MQ...1

Overview.. 1
Changes from previous version..1
Installation.. 3

Linux, Unix and Windows...3
Unix Compatibility...3

z/OS Installation Instructions..3
z/OS UNIX Installation Instructions...4

Chapter 2. Licensing... 5

Userid and Machine Information...6
Licence File Location.. 6
Multiple licences... 6
Licence Renewal.. 6
Changing your licence file.. 6

Chapter 3. Introduction.. 7

Uses... 7
Filtering.. 7

Chapter 4. Examples... 8

Example 1. Unload a Queue to a File...8
Example 2. Unload a Queue to a series of files..8
Example 3. Load a Queue from a File..8
Example 4. Load a Queue from a series of files...9
Example 5. Copy the messages from one Queue to another Queue...9
Example 6. Move messages from multiple Queues to another Queue...9
Example 7. Copy the first 100 messages from one Queue to another Queue...................................9
Example 8. Move the messages from one Queue to another Queue...10
Example 9. Move messages older than one day from one Queue to another Queue......................10
Example 10. Work with the file of messages..10
Example 11. Display the ages of messages currently on a Queue ...10
Example 12. Put messages to more than one queue...11
Example 13. Put messages to a list of queues in a file..11
Example 14. Generic Unload..11
Example 15. Generic load..11
Example 16. Required Rate Processing...12
Example 17. Required Rate Indefinite Processing...12
Example 18. Loading from a non-QLOAD file..12

Chapter 5. Generic Unload and Load..13

Generic Unload.. 13
File location.. 15

File Location on z/OS..15
Generic File Name Format...16

File limits... 16
Case sensitivity...16
The / character..17
File Type...17

iv

Queue Load / Unload Utility for IBM MQ

Generic Load.. 17

Chapter 6. Required Rate Processing...19

Unlimited Rate Processing...21

Chapter 7. Recovering Messages from the IBM MQ log..23

General recovery syntax..23
QLOAD processing a DMPMQLOG output file...24
QLOAD issuing the DMPMQLOG command..24

Performance... 25

Chapter 8. Reading non-QLOAD files...26

Loading an entire file as a single message..26
Loading multiple messages from a single file...26
Loading message properties from a delimited file..28
Special Characters... 29

Chapter 9. Parameters.. 30

Parameters Flags... 30
Getting help from the command...40
Connection Methods.. 41

Connecting as a client.. 41
Passing in a Userid & Password on the connection...41

File Use.. 42
z/OS File name format.. 42

File Insert Characters...43
File Insert Examples... 45

Queue access options.. 46
Backout re-queue Queue... 46
Transactions... 47

Transactions across Queue Managers...47
Context Options.. 48
Destination File... 49

Destination File Contents...49
Display Options.. 50

Combination of Hex and ASCII data...50
Interleaved Hex and ASCII data...50
Message Index... 51
Message Age... 51
Display Summary... 52
Counting messages.. 52

Summary Output.. 53
Message Selection... 53

Selection By Message Range..53
Selection By Search String...54
Multiple Search Strings... 54
Selection By Time on Queue..55

Selection by Message Age...55
Selection by put time-stamp..56

Selection by SQL92 Selector..57
Purge non-selected messages...58

Chapter 10. File Format.. 59

Example - Changing the user ID..59
Attribute Format Reference..60
Recognised file formats..60

Chapter 11. Migrating from previous versions...61

Changes made in Version 9.1.0...61
Changes made in Version 9.0.3...61

v

Queue Load / Unload Utility for IBM MQ

Changes made in Version 9.0.2...61
Changes made in Version 9.0.1...62
Changes made in Version 9.0.0...62
Changes made in Version 8.0.2...62
Changes made in Version 8.0.1...63

vi

Queue Load / Unload Utility for IBM MQ

Tables

Table 1: File insert characters...44

Table 2: Transaction flag values...47

Table 3: Context options used by QLOAD..48

Table 4: Message range options used by QLOAD...53

Table 5: Search string options used by QLOAD...54

Table 6: Meaning of column one symbol in file format..59

Table 7: Message descriptor attribute representations..60

vii

Queue Load / Unload Utility for IBM MQ

History

SupportPac

Ever since I released my MA01 (Q Utility) SupportPac I have had periodic requests to explain how it

can be used to unload, and subsequently reload, messages from a queue. The answer has always

been that this is not what the Q Utility is for and that surely there must be another tool available. Well,

after sufficient numbers of these requests I looked for such a tool myself and didn’t really find anything

which fitted the bill. What was needed was a very simple, some would say unsophisticated, program

which unloaded a queue into a text file. The notion of a text file was important because a number of

users wanted the ability to change the file once it had been created. I also find that text based files are

more portable and so this seemed useful if we want to unload a queue, say on Windows, and then

load the messages again on an AIX machine. The disadvantage of this approach is that the file is

larger than it would be in binary mode. Storing data using the hex representation of the character

rather than the character itself essentially uses twice as much space. However, in general I do not

envisage people using this program to unload vast amounts of message data but a few test messages

or a few rogue messages on the dead letter queue which are then changed and reloaded elsewhere.

MQGem Product

In October 2012, after working at IBM for 28 years, most of which were spent in IBM MQ Product

Development, I decided to leave IBM to pursue a different career writing tools and utilities for IBM MQ.

To that end I founded MQGem Software (www.mqgem.com).

Many people have requested that I continue to support and enhance QLOAD and sent in a number of

their requirements. I have therefore decided to add QLOAD to the list of MQGem products and to

support it while ever people find it useful. Future support and development of the program will

therefore be made by MQGem Software and all support questions should be directed to

support@mqgem.com.

I hope you find the program useful. As always I welcome your comments, both good and bad. Please

feel free to e-mail me with any bug reports or suggestions.

viii

mailto:support@mqgem.com?subject=QLOAD
http://www.mqgem.com/

Queue Load / Unload Utility for IBM MQ

Chapter 1. Queue Load / Unload Utility for IBM MQ

Overview

The Queue Load / Unload Utility for IBM MQ (QLOAD for short) allows the user to copy or move the contents

of a queue, its messages, to a file. This file can be saved away as required and used at some later point to

reload the messages back onto the queue. Messages can be copied or removed from a queue based on

various selection criteria such as position in the queue, content of messages or message properties or the age

of the message.

The unload file has a specific format understood by the utility, but is human-readable, so that it can be

updated in an editor before being reloaded. Care should be taken not to change the format when editing fields

within it. The utility will only reload a file with the correct format.

Changes from previous version

The main changes from the previous version the utility are:

1. Non-QLOAD file can contain properties blocks

Enhancing the feature added in V9.1.0, when QLOAD reads a file that was not created by QLOAD but

contains a set of user created messages (marked by delimiters), a second set of delimiters can indicate

property blocks that are added to the message as an MQRFH2 folder.

For more information please see 'Chapter 8. Reading non-QLOAD files' on page 26.

2. Fully-qualified queue names can use a user-specified separator character

To match our Q Utility, provision of a user-specified separator character with the -$ flag is now available.

Without it, the characters '#','\','/', and comma, are looked for in queue names and treated as the queue vs

queue manager name separator.

3. QLOAD will move messages to the backout queue specified on an input queue

If you have a backout threshold and a backout requeue name specified on your input queue and QLOAD

comes across messages with a Backout Count greater than the threshold, it will move those messages to

the backout-requeue queue. See more details in 'Backout re-queue Queue' on page 46.

4. QLOAD will show an application name of “MQGem Software QLOAD” on IBM MQ status output

5. Summary display extended

Previously only summarising message ages up to 1 day, and messages sizes up 1MB, the summary

display (-ds) has been extended to summarise message ages up to 1 year and messages sizes up to

50MB. See more details in 'Display Summary' on page 52.

6. Count the number of messages in an input source

Count the number of messages that match your filtering criteria, from an input queue or file.

7. Update Put date and time

When putting messages to an output queue, copy all context fields, but update the put date and time to

reflect the current time.

8. QLOAD is available natively on z/OS

1

Queue Load / Unload Utility for IBM MQ

9. Allow generic files to be used with non-QLOAD files

So, for example, a command such as:

qload -f c:\data\msg%n.txt -o Q1 -n1 -Cd

would load the files msg1.txt, msg2.txt.....etc and load it to the queue Q1.

10. New parameter -A allowing for overrides of certain message descriptor attributes

Please see 'Parameters Flags' on page 30 for more information.

11. Summary display includes queue size counters

Summarising the depth, data amount, and queue file size in a table at the end of the summary output. See

more details in 'Display Summary' on page 52.

2

Queue Load / Unload Utility for IBM MQ

Installation

Installation has been made as simple as possible. Click the download button on the web site for the

platform(s) you are interested in. This will download a zip file to your download location. Extract the files from

the zip file using the appropriate tools for the platform listed below.

Platform Unzip commands

AIX gzip -d

tar -xvf

Intel Linux tar -xvzf

Power Linux tar -xvzf

Windows Extract using your favourite zip utility

z/OS Extract using your favourite zip utility before transferring to a z/OS system. See z/OS
Installation Instructions below for more details.

Linux, Unix and Windows

Once unzipped you should have the qload executable. Copy this file into the directory where you wish to run

the program from. Normally this would be somewhere in your PATH. Remember that if you transfer the file

between machines you should make sure you do so in binary,

Unix Compatibility

A number of Unix platforms tend to be fairly bad at maintaining compatibility with future versions of the C

runtime so it may be that the latest version of QLOAD would not run on an older version of Linux. I do,

wherever possible, try to build QLOAD on older versions of the Operating System however it may not always

be possible to go back far enough. If you have problems running QLOAD, particularly if it complains about

GLIBC version, then please contact support@mqgem.com and we'll see what we can do.

z/OS Installation Instructions

Once unzipped, transfer the QLOAD.SEQ file to a z/OS system using the following commands.

ftp> binary

ftp> quote site recfm=FB lrecl=80 blksize=3120 blocks primary=1000
ftp> put QLOAD.SEQ

Once the QLOAD.SEQ file is successfully FTPed to your z/OS system, from TSO use the following command

receive inds(QLOAD.SEQ)

When prompted for a filename, reply

DSN(USER.LOAD)

3

mailto:support@mqgem.com

Queue Load / Unload Utility for IBM MQ

QLOAD can be run on z/OS in BATCH - an example piece of JCL is provided in the zip file. QLOAD can also

be run interactively, e.g. from the TSO/E READY prompt, or the ISPF Command Shell (=6). It can also be run

in z/OS UNIX.

z/OS UNIX Installation Instructions

If you wish to run QLOAD in z/OS UNIX, you can copy the MVS executable module that you have installed in

the previous section, to a z/OS UNIX executable file using the following command.

TSO OPUT 'GEMUSER.USER.LOAD(QLOAD)' '/u/gemuser/bin/qload' BIN

4

Queue Load / Unload Utility for IBM MQ

Chapter 2. Licensing

To access all the features (beyond any trial period) of QLOAD you will require a licence file. The licence file

also entitles the user to email support. If you would like to try out QLOAD for free then a 1-month trial licence

can be obtained by sending a note to support@mqgem.com.

Each licence is for a certain period of time, usually one year. There are number of advantages of this scheme:

• Customers of QLOAD get more dedicated support

Resources can be targeted towards customers who have made a financial contribution to the

development of QLOAD.

• Purchasing decision is simpler

The QLOAD licence covers a period of time not a release. Any licence, will enable the user to run any

version of QLOAD. It is therefore not necessary to concern oneself about whether a bigger, better

version is about to come out soon since whatever licence you buy now will also work for that version.

• Features are available sooner

Using this model it is not necessary to collect a large group of features together to 'justify' a new

release of QLOAD. Instead a new release can be made available whenever a new feature is added

which is regarded as sufficiently useful since all current users will be able to migrate to the new

version at no cost to themselves.

There are five types of licences which allow different levels of flexibility about who can run the program.

Essentially this is controlled by the presence, or not, of userid, machine or location fields.

Type Fields Set Description

Emerald userid,
machine

QLOAD is only supported on one machine using one userid.

Ruby machine QLOAD is supported by any number of users using it on the same machine.

Sapphire userid QLOAD is supported on any number of machines using the same userid.

Diamond location QLOAD is supported by any number of users at the same site on any set of
machines.
The location field gives the location, for example “London, England” of where
the licence is based.

Enterprise none QLOAD can be run by any number of users within your company, world-wide.
An Enterprise licence is priced at three times the Diamond licence price.

5

mailto:support@mqgem.com?subject=QLOAD%20Trial%20Licence

Queue Load / Unload Utility for IBM MQ

Userid and Machine Information

Some licence types limit the execution of the program to particular machines and userid. It is important,

therefore, that when you purchase these licences that you specify these values correctly. If you are in any

doubt run the QLOAD program with the following command on the machine you wish to run QLOAD on.

qload -Oi

This will print out the User Identifier and Machine Name values that you should include in your licence order.

Licence File Location

If a licence file is bought you will be sent an mqgem.lic file. All you need to do is place this licence file in the

appropriate place for the QLOAD program to find it as detailed in the table.

Platform Location

Windows and Linux Same directory as the QLOAD program

AIX and z/OS UNIX Current directory

Z/OS DD:MQGEML

Alternatively you can set environment variable MQGEML to point to the directory path where the licence file

can be found (in which case the name will be assumed to be mqgem.lic), or MVS file or DD name of the

licence file. For example, if you use the program in all of TSO, z/OS UNIX and from JCL, you can have one

copy of the licence file saved either as a z/OS UNIX file or in an MVS dataset, and refer to it from any

environment.

Multiple licences

If you have multiple licences then they can be concatenated into a single mqgem.lic file. This can be done

using simple OS commands such as copy or by using your favourite editor.

Licence Renewal

An extra years licence can be purchased at any time and a new licence will be sent which extends the current

licence by a year. There is therefore no concern with losing time by renewing early.

Changing your licence file

The licence file is a simple text file. Generally speaking if you change the contents of the licence file you will

invalidate it and it will cease to work. However, there are some minor changes you can make if you wish.

Naturally it is always recommended that you keep a copy of the original unchanged file.

• You can change the case of any of the values.

• You can add or remove white space such as blanks

• You can add or change any lines which start with '*' since these are comment lines.

6

Queue Load / Unload Utility for IBM MQ

Chapter 3. Introduction

QLOAD can be useful for a wide variety of tasks. At it's core it is a pipeline for messages, moving or copying

messages from a source to a target. The source and target can either be a queue (or set of queues) or a file

(or set of files). During the transfer the messages can be filtered so that only some of the messages are

transferred.

Uses

QLOAD can be used for a huge range of tasks which include the following:

➢ To unload messages from a queue to a file

The file can, if you wish, be edited to change the message and MQMD content before being re-

loaded.

➢ To re-load message from a file back to a queue

Messages can be reloaded at variable speed. You can even reload the messages at the same relative

speed that they were put to the original queue.

➢ To unload all queues, or a set of queues, from a Queue Manager to a set of files.

For example to take a back-up of your entire Queue Manager messages or to migrate from one

Queue Manager instance to another.

➢ To re-load a set of files to a Queue Manager

To restore a back-up or complete a Queue Manager migration

➢ To copy or move messages between queues

These messages can be filtered in many different ways so only certain messages are copied or

moved. See below for the types of filtering that can be applied.

➢ To backup or remove messages from queue

Again, these messages can be filtered – e.g. removing all messages older than a certain age

➢ To copy a single queue to a set of target queues

➢ To consolidate input from several queues to a single queue

➢ To load a set of user created messages to a queue

Filtering

As messages are transferred between the source and target you can apply filtering based on various

characteristics of the messages. For example, filtering can be based on:

➢ message position

➢ a string search

➢ message put timestamp

➢ message age

➢ message size

➢ message priority

➢ message id, correlation id or group id

➢ an SQL92 Selector

One of the best ways to learn how to use the program is to see a set of sample commands so please refer to

“Chapter 4. Examples” on page 8 for examples of how to run the program. Full information about the program

parameters can be found in “Chapter 9. Parameters“ on page 30.

7

Queue Load / Unload Utility for IBM MQ

Chapter 4. Examples

QLOAD can be useful for a number of tasks. As you will see, as you learn more about the features of QLOAD,

the examples below are just a few of the things you can do with QLOAD. This just gives you a quick idea

about what problems it can solve. All of these examples can be modified with the use of a number of other

parameters which are documented in “Chapter 9: Parameters” on page 30.

Example 1. Unload a Queue to a File

To save the messages that are on a queue, to a file, perhaps for archiving purposes and the possibility of later

reload back onto a queue; use the following options on the command line.

qload -m QM1 -i Q1 -f c:\myfile

This takes a copy of the messages from the queue and saves them in the file specified. The format of this file

is described in “Chapter 10: File Format” on page 59.

Example 2. Unload a Queue to a series of files

You can unload a queue to series of files by using an ‘insert’ character in the file name.

In this mode each message is written to a new file.

qload -m QM1 -i Q1 -f c:\myfile%n

This command will unload the queue to files, myfile1, myfile2, myfile3 etc.

You can control the name of the file in a number of ways, by adding date, time, or message number inserts to

the file name. For a complete list of insert characters please refer to “File Insert Characters” on page 43.

By default each message will go to a different file when using the %n insert. However, by using the -L

parameter the criteria for which a new file is created, can be change. For example, with the following options,

a number of messages are written to each new file. The file limit provided causes a new file to be created

once the current output file reaches 500 kilobytes in size.

qload -m QM1 -i Q1 -f c:\myfile%n -Ls500k

Example 3. Load a Queue from a File

To reload a queue with the messages you saved in “Example 1. Unload a Queue to a File”, use the following

options on the command line. Note that the file passed to QLOAD must be a recognised format. The

recognised formats are listed in “Recognised file formats” on page 60

qload -m QM1 -o Q1 -f c:\myfile

8

Queue Load / Unload Utility for IBM MQ

Example 4. Load a Queue from a series of files

You can load a queue from a series of files by using an ‘insert’ character in the file name.

qload -m QM1 -o Q1 -f c:\myfile%n

This command will load the queue files files, myfile1, myfile2, myfile3 etc. For a complete list of insert

characters please refer to “File Insert Characters” on page 43.

Example 5. Copy the messages from one Queue to another Queue

The file parameter in “Example 1. Unload a Queue to a File” could be replaced with another queue name

instead, allowing the messages from one queue to be copied to another queue, using the following options on

the command line.

qload -m QM1 -i Q1 -o Q2

Example 6. Move messages from multiple Queues to another Queue

You can specify the -i and -I parameters as many times as you wish if you want to copy/move messages

from multiple queues. In this case we are moving messages from three queues to a single target queue.

qload -m QM1 -I Q1 -I Q2 -I Q3 -o Q4

Example 7. Copy the first 100 messages from one Queue to another Queue

The file parameter in “Example 1. Unload a Queue to a File” could be replaced with another queue name

instead, allowing the messages from one queue to be copied to another queue, using the following options on

the command line.

qload -m QM1 -i Q1 -o Q2 -r#100

This example could be extended further to copy the messages to a queue on another queue manager, by

using the following options on the command line.

qload -m QM1 -i Q1 -m QM2 -o Q2 -r#100

Please see “Transactions across Queue Managers“ on page 47 for a discussion on the transactional

implications of copying/moving messages between Queue Managers.

9

Queue Load / Unload Utility for IBM MQ

Example 8. Move the messages from one Queue to another Queue

A variation on “Example 3. Load a Queue from a File” would be to move the messages instead of copying

them. This illustrates the distinction between using -i (lower case) which only browses a queue, and -I
(upper case) which destructively gets from a queue. Use the following options on the command line.

qload -m QM1 -I Q1 -o Q2

This example could be extended further to copy the messages to a queue on another queue manager, by

using the following options on the command line.

qload -m QM1 -I Q1 -m QM2 -o Q2

Please see “Transactions across Queue Managers“ on page 47 for a discussion on the transactional

implications of copying/moving messages between Queue Managers.

Example 9. Move messages older than one day from one Queue to another Queue

This example shows the use of age selection. Messages can be selected which are older than, younger than

or within a range of ages. Use the following options on the command line.

qload -m QM1 -I Q1 -o Q2 -T1440

Example 10. Work with the file of messages

Having unloaded the message from your queue, as in “Example 1. Unload a Queue to a File”, you may want

to edit the file. You may also want to change the format of the file to use one of the display options that you

did not specify at the time you unloaded the queue. You can use QLOAD to reprocess the file into the desired

format even after the unload of the queue has taken place. Use the following options on the command line.

qload -f c:\oldfile -f c:\newfile -dA

Example 11. Display the ages of messages currently on a Queue

Use the following options on the command line.

qload -m QM1 -i Q1 -f stdout -dT

10

Queue Load / Unload Utility for IBM MQ

Example 12. Put messages to more than one queue

You can target more than one queue for the messages to be sent to using the following options. This can

include using a fully qualified remote queue - in this case Q3 on QM2.

qload -m QM1 -I Q1 -o Q2 -o QM2/Q3

Example 13. Put messages to a list of queues in a file

With a file containing one queue name per line, you can use that file to specify the output queues.

qload -m QM1 -I Q1 -o file:c:\QueueList.txt

Example 14. Generic Unload

Unload all the non-empty queues to files in the current directory.

qload -m QM1 -i * -f *

For more information please refer to 'Generic Unload' on page 13.

Example 15. Generic load

Re-load all the unloaded files to their appropriate queues.

qload -m QM1 -o * -f *

For more information please refer to 'Generic Load' on page 17.

11

Queue Load / Unload Utility for IBM MQ

Example 16. Required Rate Processing

Copy messages from a source queue to a target queue at a predefined rate.

qload -m QM1 -i SOURCE -o TARGET -R1000:*

This command will copy messages from SOURCE to TARGET at 1000 messages per second. This is useful

for emulating a workload. Pre-load the SOURCE queue with your test messages and then inject them into

your processing application at the prescribed speed.

For more information please refer to 'Required Rate Processing' on page 19.

Example 17. Required Rate Indefinite Processing

Copy messages from a source queue to a target queue as fast as possible.

qload -m QM1 -i SOURCE -o TARGET -R*:*

This command will copy messages from SOURCE to TARGET as fast as they can be processed by the

application processing the TARGET queue. This can be useful to get a rough idea of the processing capability

of your system.

For more information please refer to 'Required Rate Processing' on page 19.

Example 18. Loading from a non-QLOAD file

If you have a file with message data, but not in the QLOAD format, you can still load it onto a queue as long

as you can describe the delimiters of the messages within the file.

For example, with one line per message:-

qload -m QM1 -oQ1 -f messages.txt -Cd -nn

Or if you have some kind of tag that surrounds the messages:-

qload -m QM1 -oQ1 -f messages.txt -Cd -nns:"<msg>" -nne:"</msg>"

This file can also contain blocks of data representing message properties (or in fact any MQRFH2 folder).

Again, you just need to describe the delimiters of both the message block and the property block.

qload -oQ1 -f msgs.txt -Cd -ns:"<msg>" -ne:"</msg>" -nip:"<usr>" -niq:"</usr>"

For more information please see 'Chapter 8. Reading non-QLOAD files' on page 26.

12

Queue Load / Unload Utility for IBM MQ

Chapter 5. Generic Unload and Load

Sometimes it can be useful to unload all the messages from a Queue Manager and then have the ability to re-

load them back again. This could be, for example, for back-up purposes or Queue Manager migration. Clearly

we could unload each queue manually with a separate QLOAD command but that would be awkward and

error prone. We would need to use some form of scripting language to first retrieve the set of queues to

unload. It would be nice to have QLOAD do all the hard work for us. And, of course, it can. The basic

commands are very simple.

Generic Unload

Suppose we wish to unload all of the Queues on a Queue Manager. This is achieved very simply by issuing

the following command:

qload -m QM1 -i* -f*

It is the '*' in the file name that tells QLOAD that this is a generic unload. Because the file name is not explicitly

given it is derived from the queue name. If we were to issue this command QLOAD would unload all non-

empty queues to a different file in the local directory1. The output of the program would show the progress it

was making. An example of the output would be:

Q1 44 Done.
Q2 3 Done.
SALES 2 Done.
SAMPLES 10 Done.
SYSTEM.ADMIN.ACCOUNTING.QUEUE 2480 Done.
SYSTEM.ADMIN.CONFIG.EVENT 10 Done.
SYSTEM.ADMIN.PERFM.EVENT 34 Changing.
SYSTEM.ADMIN.QMGR.EVENT 1 Done.
SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE 1490 37%

QLOAD will output a line per for each queue it unloads. During the unload process itself it will display a

progress indicator to show how far through the unload process it is.

Before it starts the unload QLOAD will query all the non-empty queues in Queue Manager. It remembers the

depth and it compares that to how many messages were actually unloaded. If they are different when the

unload is complete it will output the words 'Changing' rather than 'Done'. This is to give you an indication that

this queue appears to be active, In the case of the SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE above this is

perhaps not surprising if activity trace is active. So, in this case, it would not be of concern. However, for some

application queues it might be. It could be an indication that application activity has not yet ended and that the

unload should be re-attempted when all applications and transactions have completed.

1Of course it is important to run this command under a userid which has the authority to view the queues you are
interested in.

13

Queue Load / Unload Utility for IBM MQ

Of course you don't have to unload every queue. The -i parameter tells QLOAD which queues you are

interested in using normal wildcard semantics. For example, we could have specified the following command.

qload -m QM1 -iAPP* -f*

This will, as you might expect, unload only queues that start with the characters 'APP'. By default the -i

parameter is case insensitive though. If you wish to ensure that QLOAD matches the case of the supplied

queue name then you should surround the name with single quotes. For example:

qload -m QM1 -i'APP*' -f*

Once the unload is complete QLOAD will output summary lines. For example:

Total : 24 Queues, 393 Messages
 plus : 15 System Queues, 5522 Messages

The reason the summary is split into two totals is that most system queues will not be uploaded by a generic

upload. Essentially the first line tells you how many messages and queues would be uploaded by a generic

upload. The second line tells you how many other system queues were unloaded.

QLOAD will unload all SYSTEM queues in a generic unload except the following:

• SYSTEM.ADMIN.COMMAND.QUEUE

• SYSTEM.COMMAND.INPUT

So, you will have a copy of most SYSTEM queues for back-up purposes.

However, most SYSTEM queues will not be loaded by a generic load operation. This is because most

SYSTEM queues are intrinsically in-use by the SYSTEM and changing their content could cause a problem

for the queue manager. The only SYSTEM queues which will be loaded on a generic load are:

• SYSTEM.CLUSTER.TRANSMIT.QUEUE

• SYSTEM.DEAD.LETTER.QUEUE

Of course if you really, really want to upload the content of a different SYSTEM queue then you can do so

using the normal non-generic QLOAD command but in general it is not a good idea. If they truly are SYSTEM

queues they are 'owned' by the Queue Manager and their content is particular to the current Queue Manager

operation and generally speaking the messages on them should not be transferred between Queue

Managers.

14

Queue Load / Unload Utility for IBM MQ

File location

When you issue a command such as this:

qload -m QM1 -i* -f*

The queues are unloaded into files in the current directory. However, it is possible to tell QLOAD to unload the

files to a different directory.

For example:

qload -m QM1 -i* -fc:\unloads*

Generally speaking it is sensible to unload the queues into an empty directory, or at least one that does not

already contain unload queue files. This is to avoid one set of unloaded queues being contaminated by

another. To further help this QLOAD will output a message if any unload files are detected in the directory and

ask whether you are happy to delete them.

There are actually two such messages. The first covers files which match the queues about to be unloaded.

The files must be deleted in order to continue. The second message covers files which have been discovered

in the directory but which won't actually be impacted by the current unload since we are unloading a different

set of files. For this second message QLOAD will ask whether you want to delete these files or leave them

and continue. Bear in mind that if you do say continue your directory will contain files that are the sum of more

than one unload operation.

If you use the -F, instead of the -f parameter, which signifies overwrite, the first of these messages will not be

displayed and any existing files will be deleted and overwritten by the new download.

File Location on z/OS

While QLOAD will allow you to do individual queue unloads and loads using DD names to refer to the files,

when using generic unload and load, the files created will be z/OS UNIX files and the pattern representing

them, specified with the -f parameter, must be provided directly, and not using a DD name.

When you issue a command such as this, when running QLOAD in z/OS UNIX:

qload -m MQG1 -i* -f*

the queues are unloaded into files in the current directory. If you use the same command from TSO, or when

running from JCL, the queues are unloaded into the home directory of the TSO user.

Alternatively, you can provide an explicit HFS directory to be used instead of the home directory:

qload -m MQG1 -i* -f/u/gemuser/unloaded/*

15

Queue Load / Unload Utility for IBM MQ

If you run the follow command from JCL, you must use double quotes round it to ensure that the PARM string

does not pick up the ‘/’ character.

//QLOAD EXEC PGM=QLOAD,

// PARM=('-m MQG1 -i* -f"/u/gemuser/qload/generic/*"')
//STEPLIB DD DSN=GEMUSER.USER.LOAD,DISP=SHR

// DD DSN=IBM.MQ.SCSQAUTH,DISP=SHR
// DD DSN=IBM.MQ.SCSQANLE,DISP=SHR

//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Generic File Name Format

By default the file name used for an unloaded queue is <QUEUENAME>.qld

However, as is so often the case, it is not quite as simple as this.

File limits

The first consideration is the file size. If the queue is really deep and/or the messages are very large then it is

possible that the unloaded file could itself be very large. Large files are unwieldy and are themselves limited in

size by the file system. It therefore makes sense to ensure that files don't grow too large. By default QLOAD

will set a maximum file size of 500MB for a generically unloaded file. You can, if you wish change this using

the -Ls flag described in “Parameters Flags“ on page 30. Any of the file limit parameters may be used. For

example you could decide that no more than 5,000 messages should be stored in a single file. By default,

generic unload does not limit the number of messages which can be stored in a single file, the limit is purely

on size.

So, if we limit the file size this means that we may have to unload a queue to two, three or many different files.

For example, if we were to unload a large queue called TEST we would end up with files such as:

TEST$1.qld
TEST$2.qld
TEST$3.qld
TEST$4.qld

A monotonically increasing index number is put on the end of the file name after a ''$' character.

All sequences of files in this manner must start at index 1. There must be no gaps to the largest number.

However, there are no limits on the number of files which can be stored.

Case sensitivity

As I'm sure you know MQ Object names are case sensitive. This means that it is perfectly legitimate to have

queues called SALES, Sales and SaLeS. Note that we say that this is a legal thing to do, we are not saying it

is a sensible thing to do. In fact, we would argue against it. However, it is possible so QLOAD has to be able

to deal with it. If we left things as they are we would end up with files such as:

SALES.qld
Sales.qld

16

Queue Load / Unload Utility for IBM MQ

SaLeS.qld

And this would be fine on a Unix system where files are case sensitive anyway. However, on Windows,

despite the file system knowing about 'case', these files would usually be treated as the same file. To avoid

this QLOAD adds a unique qualifier to each file. So, the files actually used would be:

SALES.qld
SaLeS#1.qld
Sales#2.qld

So, the case of the Queue Name is stored in the file name itself but a unique qualifier is added to the file name

to ensure that it will not clash with any other file.

The / character

Rightly or wrongly a Queue Name can contain a forward slash ('/') character. File names containing this

character are either not allowed or not a good idea. So QLOAD will replace any '/' characters with an

exclamation mark ('!').

File Type

Until now we have always assumed that the files have a file type of .qld. This is default but if you prefer you

can change it. It is simply a matter of using the file type you want on the QLOAD command. For example in

the following command:

qload -i* -f*.txt

This command will give all the files the file type of .txt.

Naturally you must remember to specify the same file type on the upload command, such as:

qload -o* -f*.txt

Of course you have to be careful that you don't have other .txt files lying around in that directory that QLOAD

might also try to use. For that reason if you do decide to use your own file type it is best to use something that

is firstly meaningful and secondly not in common use on your system.

Generic Load

As you might expect the generic load command is very similar to a generic unload. If you haven't already read

the description of “Generic Unload“ on page 13 I suggest you do so now. The basic command for a generic

load is very simple.

qload -m QM1 -o* -f*

17

Queue Load / Unload Utility for IBM MQ

This command tells QLOAD to look for any .qld file in the current directory and upload the contents of that file

to the equivalently named queue on Queue Manager QM1. If we issue the command we might see something

like the following:

Q1 Not empty.
SALES RC(2085) Unknown object name.

There are potential problems with these queues.
Are you sure you want to continue?

Hopefully you won't see this output but it demonstrates the checks that QLOAD makes. Firstly QLOAD

expects all the queues about to be uploaded to be currently empty. If they aren't it will warn you. This is to

avoid unintentionally contaminating one set of messages with another. Clearly if you were restoring a backup

or migrating a set of queues from one Queue Manager to another you would not expect the queues to already

contain messages. However, if this is not a concern to you then you can say 'continue'.

QLOAD will also check at this point that you do have access to the required queues. Firstly this checks that

the queue actually exists but it also checks that you have sufficient authority to put messages on the queue. If

you choose not to continue at this point then none of your queues have been changed. If you do decide to

continue then you might be displayed something like this:

Q1 44 Done.
SALES RC(2085) Unknown object name.
SYSTEM.CLUSTER.TRANSMIT.QUEUE 23%

Note that QLOAD went ahead and loaded the messages onto Q1. So, Q1 will now contain 44 additional

messages to whatever it had before. Note we also try again to upload the 'SALES' queue. This means that

when you get the first message telling you the queue does not exist you can, if you like, define the queue

before saying continue.

In this display we can also see that QLOAD will display a progress indicator2 while it is uploading a queue. In

this case it is the SYSTEM.CLUSTER.TRANSMIT.QUEUE3 and we are almost a quarter of the way through

the upload.

As in the case of unload QLOAD will output a summary line once the upload is complete.

For example:

Total : 22 Queues, 265 Messages

If the upload completes normally then you would expect these numbers to match the first set of numbers in

the generic unload. We know that in this case they won't match since we know at least one queue, 'SALES'

which doesn't exist on this new Queue Manager.

2The progress indicator will not be shown on z/OS when running in batch or TSO. It will only be shown in z/OS UNIX.
3Remember that a generic upload will not upload most SYSTEM queues. SYSTEM.CLUSTER.TRANSMIT.QUEUE and
SYSTEM.DEAD.LETTER.QUEUE are the exceptions.

18

Queue Load / Unload Utility for IBM MQ

Chapter 6. Required Rate Processing

There are times when you want to copy or move messages but only at a controlled rate rather than as fast as

possible. The main reasons you might wish to do this are:

1. You would like to test that a server application can cope with a particular message rate.

2. You would like to know what message rate your server application can achieve.

3. You would like to know how many messages per second you can move across your channel.

4. You wish to inject lots of messages into your production system but you don't want to risk upsetting
any running applications so you would like to 'trickle feed' in the messages.

QLOAD allows you to do all these things using the -R parameter in combination with the other standard

QLOAD parameters. The simplest form of the command will just copy messages from a source queue to a

target queue at a predefined rate. The main use of this command is test that an applications server can cope

with a particular message load. First you create some test messages of the form you want your server

application to process and put then on the 'SOURCE' queue and then you issue a command such as the

following:

qload -i SOURCE -o TARGET -R500

This command will copy messages from the source queue to the target queue at a rate of 500 messages per

second. In an ideal world the program would copy each message and then wait 1/500th of a second between

each message. However, this is fraught with hazard. Firstly this method would only work if the MQPUT time

took no time at all. Secondly Operating Systems do not do well with sleeps of small amounts of time because

the process is continually giving up its time-slice4. So, instead QLOAD will put all messages as fast as it can

and then sleep for the remainder of the second. Once QLOAD has copied all of the messages from the queue

it will stop.

Of course the intention of this command is that you have an application processing the messages as they

arrive at TARGET. This allows you to verify that the application is capable of processing messages at the

given rate. Clearly if the application is not capable then the depth of queue TARGET will grow and grow.

One potential problem with this simple command is that it may be necessary to generate large numbers of test

messages in order to run the command and see the effect. A slight variance on this command is to specify a

duration for the test. This is specified by following the message per second value with another value which is

the number of seconds for the test. For example:

qload -i SOURCE -o TARGET -R500:300

This command instructs QLOAD to continue copying messages for 5 minutes. The other key difference about

this command though is that if QLOAD reaches the end of the source queue then it will just start again at the

first message. It is possible, therefore, to run a test, putting 500 messages per second to a target queue with

they only actually being a single message on the source queue. The same message is put to the target queue

over and over again. In reality though it is recommended that you have at least 10 source messages to reduce

the overhead of returning back to the start of the queue.

4If you really want to issue a sleep before each MQGET call you can do so using the -D parameter. Bear in mind though
that, depending on the OS, it will not work well with really small sleeps.

19

Queue Load / Unload Utility for IBM MQ

The next variant of the command is to specify that you want the test to run indefinitely. This is done merely by

specifying an asterisk (*) as the required duration. So, we get the following command:

qload -i SOURCE -o TARGET -R500:*

This command will run forever, or at least until there is a failure of some sort. For example, the Queue

Manager ends or a queue fills up. Once the test has run long enough for you to gather your test information

you will need to end the QLOAD program manually. This means something like pressing Ctrl-C in the

command window or killing the process (using kill or task manager), or cancelling the job in SDSF, or

disabling the target queue for put using an MQSC command like:

ALTER QLOCAL(TARGET) PUT(DISABLED)

Of course we don't have to copy the messages, we can choose to move them between the queues. The

command to do this would simply be:

qload -I SOURCE -o TARGET -R50

This command is useful for trickle feeding in a set of messages into a running system where you don't wish to

cause any issues to any running applications. For example, suppose you had 10,000 messages you wish to

process. You could just put all 10,000 messages on to the TARGET queue but it is likely that this would affect

the response time of any running applications. Of course the actual affect depends on a number of factors,

principally how fast each message is to process. However, trickling the messages in is always going to be a

safer option. The command above trickles the messages in at a rate of 50 messages per second which means

that our 10,000 messages would take just over 3 minutes to process. Of course the rate you choose is entirely

up to you and would depend on the type of request.

When you are moving messages, as opposed to copying them, you can not specify a duration. This is

because there is no concept of going back to the beginning of the queue. QLOAD will run until it runs out of

messages. That is not to say though that a command of this type can not run for a long time. All we need to do

is add another parameter. Consider the following command:

qload -I SOURCE -o TARGET -R50 -w 86400

By adding the -w parameter we have told QLOAD to wait for up to 24 hours if it runs out of messages. So,

now we can use QLOAD as a constant buffer between two queues. QLOAD will sit there waiting for messages

to arrive on the SOURCE queue. When they do arrive they will be trickle-fed to the TARGET queue. So let's

say, for example, you had an application that produces messages throughout the day and at the end of every

day it dumped its entire operating log to a queue. We suppose that this sudden influx of messages causes

problems, perhaps by clogging up your sender/receiver channels, you could use this command to spread out

the workload.

Of course bear in mind that if, for some reason, no messages arrive on the source queue for an entire day

then QLOAD will end. This can be mitigated by increasing the wait time, having QLOAD triggered in some

way, or having QLOAD started automatically as a Cron job or similar.

20

Queue Load / Unload Utility for IBM MQ

Unlimited Rate Processing

The final variant of the -R parameter is where you don't want to specify the message rate but instead you are

interested in what rate can be achieved. The command for this is very simple:

qload -i SOURCE -o TARGET -R*:*

Here we have specified an asterisk (*) for the message per second rate. This tells QLOAD to put messages to

the target queue as fast as they are processed. If I issue the command on my system I get the following

output.

qload -i SOURCE -o TARGET -R*:*

Queue Load/Unload Utility for IBM MQ
 Version V9.1.1 Build date:Aug 7 2019
 (C) Copyright MQGem Software 2015,2019. (http://www.mqgem.com)

Monitoring depth of queue 'TARGET'

Message Rate 802 msgs/sec
Message Rate 5200 msgs/sec
Message Rate 5548 msgs/sec
Message Rate 5516 msgs/sec
Message Rate 5409 msgs/sec
Message Rate 5566 msgs/sec
Message Rate 5503 msgs/sec
^C

Roughly every second QLOAD will output how many messages it has managed to put to the queue. It does

this by adjusting the copy rate until a balance is achieved. You can, therefore, ignore the first few numbers as

QLOAD tries to find the rate at which the processing speed remains reasonably consistent5.

Bear in mind that the key difference between this speed test and others you may have seen is that in this case

QLOAD is monitoring the target queue to ensure that the messages are being processed at the same rate that

they are being put to the queue. It is not just simply trying to put messages to the queue as fast as possible. In

this test to 'process' the messages I just used a simple sink program using another instance of QLOAD with

the following command:

qload -I TARGET -f null -w600

In a real world example however you would have your target application actually processing the test

messages and therefore there would be some 'think' time.

Now, as you can see MQ is capable of processing many messages a second. In fact on many systems you

will see a number far higher than this. As a consequence it is important to have your maximum depth values

on your queue set to a large number. By default the maximum depth of a queue is 5,000 which is likely to be

too small. As you can see MQ can easily fill a 5,000 message queue in under a second. We recommend that

if you are going to try a test of this sort that you would set your maximum depths to at least 20,000 and

possibly far more. It all depends on the type and size of messages and the speed of your system.

5Of course with any test of this nature you are at the mercy of what ever else if happening on the system so complete
consistency can be hard to achieve. The purpose of this type of test is not to give an exact number but to give an
approximation, to try and determine the kind of numbers which can be achieved.

21

Queue Load / Unload Utility for IBM MQ

The next thing to say is that the message per second rate output by QLOAD should merely be taken as a

ballpark figure. There are a huge number of things which can affect performance of a messaging system. As

we have discussed before just the way the Operating System schedules processes can have a very significant

effect. But we must also bear in mind that QLOAD is not 'doing much'; there is no 'think' time in the putting

application so perhaps represents the best that can be achieved. Having said that there are down-sides to the

QLOAD processing also which adversely affects performance. Most notably the fact that QLOAD has to put all

the messages at the start of the second, rather than spreading them out during the second. This means that

during that second that the queue depth will increase significantly and then be drained by the processing

application. The target queue is therefore growing and shrinking rather than the more ideal situation of it

staying roughly the same size. The first problem caused by this is that there is little chance for MQ to be

efficient – what is often referred to a 'put to waiting getter'. The notion that the message can just be passed

from one application to another. Instead, the vast majority of the messages will actually have to be put to the

queue. The other problem is that the queue depth grows beyond what is most efficient. If a queues depth goes

beyond the message buffer areas then the messages have to be spilled to disk which is not ideal and hurts

performance.

Of course it is also possible to run all the Required Rate commands across a channel. For the Unlimited Rate

case this raises another couple of issues.

So, to run this test across a sender/receiver channel we would issue a command something like:

qload -m QMA -i SOURCE -o QMB/TARGET -R*:*

Here we are reading from queue SOURCE on Queue Manager QMA and sending to a queue called TARGET

on Queue Manager QMB. The key point to realise here is that QLOAD will be monitoring the depth of the

transmission queue on QMA not the depth of queue TARGET on QMB. The assumption therefore is that the

target application can keep up with the message rate. If it can't then the queue will become full and the

receiving channel will go into 'paused' state which will essentially nullify the test. However, assuming that the

target application can keep up, this test is useful because it will give you an indication of how fast messages of

this type and size can be sent down the channel.

22

Queue Load / Unload Utility for IBM MQ

Chapter 7. Recovering Messages from the IBM MQ log

IBM MQ provides a command for formatting the IBM MQ log files on distributed platforms, called

DMPMQLOG. This command will show you all the activity to the log files. One of the most important records

amongst these are clearly the messages written to the queues. It follows therefore that, if persistent messages

are deleted for some reason, it should be possible to use this output to reconstruct the messages themselves

and put them back on a queue.

As with all recovery technology, such as recovering accidentally deleted files, there are very few guarantees.

This facility in QLOAD is provided as a 'best can do' feature which may not work in your specific environment.

One of the reasons for this is that although IBM provides the DMPMQLOG log formatter program they only go

half way. They don't actually document the full format of the records themselves. So, we are in the slightly

strange situation of having a supplied formatting program which doesn't actually fully format the data.

However, the data format is fairly easy to determine and as such it is possible for us to add this feature to

QLOAD to post process the DMPMQLOG output. Of course, one thing which is worth stating up front is that

since the data format is not fully documented, we could find that the record format changes with a new IBM

MQ release. As we said before there are no guarantees with this feature but if you do find that QLOAD is

incapable of recovering a message then if you send us the log file in question we will do our best to modify

QLOAD to accept the new format.

So, that being said, what other conditions must be met for message recovery

• The message must be in the log file

This may seem obvious but whether an MQ message is actually written to the log file depends on a

number of factors. Your best chance of finding the message in the log file is when it is a persistent

message written to a Queue Manager running with a linear log file. Message recovery will work from

either a circular or linear log file. However with a circular log clearly there is a considerable risk that

the message has been over-written by subsequent messages.

• Sufficient Authority

You need sufficient authority to issue the DMPMQLOG command. Usually this means that you need

to be in the 'mqm' group.

General recovery syntax

Message recovery follows the same pattern as other uses of QLOAD. First you have an 'input' which, in this

case, is the DMPMQLOG output and then you have an output which can either be a queue or a file. Between

the two you can have a whole variety of filters to control which of the input messages get written to the output

location.

Now, in terms of input you can actually have two modes of operation. QLOAD can either parse a previously

generated DMPMQLOG output file, or it can invoke the DMPMQLOG command in the background and

process it's output directly. The key parameter which dictates whether QLOAD is expecting to process a

DMPMQLOG file is the existence of the -j parameter. The two basic versions of the command might look

something like this:

23

Queue Load / Unload Utility for IBM MQ

QLOAD processing a DMPMQLOG output file

This format of the command would be used if you had already used the DMPMQLOG command to generate

an output file and just wanted QLOAD to process the already created file.

qload -j c:\myfiles\dmpmqlog.out -i Q1 -f recover_Q1.qld

QLOAD will attempt to process the file directly if a file name is included in the -j parameter. Note that you can

not use a file name with a file type of .log. This is avoid confusion with the actual MQ log files. QLOAD can not

read the log files directly, it can only process the output of the DMPMQLOG command.

Clearly you need to arrange for the input file to contain the messages you are interested in. The first stage of

this process would be to select the linear log files that are for the time interval you are interested in. These

IBM MQ log files are then passed to the DMPMQLOG command. In addition, the DMPMQLOG command

contains a number of options which allow you to control how much or little of the log files are processed.

The command above will process the input file and recover all messages found on queue Q1 and put the

messages into file recover_Q1.qld This file can then be edited, emailed or loaded onto a queue as required.

If you wish you can put the messages directly to a queue using a command such as:

qload -j c:\myfiles\dmpmqlog.out -i Q1 -m MYQM -o RECOVERQ1

QLOAD issuing the DMPMQLOG command

This format of the command is used when you would like the messages recovered directly from the log file.

The DMPMQLOG command is still issued but it is issued behind the scenes with no need to create an

intermediary file.

qload -m MYQM -j* -i Q1 -f recover_Q1.qld

The asterisk6 in parameter -j will look in the default location for the log files for Queue Manager MYQM and

process the resultant DMPMQLOG output and put any message found to the output file.

Note that the DMPMQLOG command requires that the Queue Manager generating the log files is not currently

running.

Again, if we wish, we can put the found messages directly to an MQ queue. However, note that, since we

know MYQM must not be running, we need to use a different Queue Manager as the target for the messages.

qload -m MYQM -j* -i Q1 -m MYQM2 -o RECOVERQ1

You can, if you wish, be more explicit with the location of the log files. In this example you specify a path to the

log files just as you would on the DMPMQLOG command itself.

qload -j c:\mylogfiles -i Q1 -f recover_Q1.qld

6Some Unix shells may interpret the asterisk. In this case do not put a space between -j and the asterisk. Alternatively, put
quotes round the parameter.

24

Queue Load / Unload Utility for IBM MQ

As mentioned before the DMPMQLOG command allows you to specify some filtering fields. You can specify a

start and end LSN. QLOAD allows you to specify these after the log path so your -j parameter would be

LogFilePath(StartLSN - EndLSN). For example,

qload -j c:\mylogfiles(0:0:0:0-0:0:72:51707) -iQ1 -f recover_Q1.qld

Either the start or end LSN can be omitted if required. If only the end LSN is specified then just precede the

value with a '-' (minus) sign.

Performance

Clearly log files can be large. It follows therefore that any program reading the log files can have a lot of work

to do and may take a considerable time to do its task. Sometimes this doesn't matter and the program can be

run over-night, or whatever, to parse through the entire log. However, if performance is a factor then try to

ensure that the input file is as targeted as it can be, perhaps by using the date of the MQ log files.

If you plan on recovering more than one queue, then running the DMPMQLOG command first and having

QLOAD process the resultant file will use less CPU since you only need to format the MQ logs once.

In all cases QLOAD will output a regular status line so that you can see that it is processing and have some

idea of the speed it is running. The status line looks like the following:

DMPMQLOG Records : Line:498090 Records:11420 Messages (2670, 10, 5)
 A B C D E

The inserts to the status line are as follows:

• A The line number currently being processed

• B How many log records have been found so far

• C How many messages have been found so far

• D How many messages for the required input queue name have been found

• E How many messages have been written to the output location (this may differ from D if you are
filtering the messages).

25

Queue Load / Unload Utility for IBM MQ

Chapter 8. Reading non-QLOAD files

Generally speaking QLOAD will be used to unload queues to files and then reload those files back to either

the same or different queues. However, there are times when it might be useful to start from a message in a

file and be able to load those messages to a queue. This could be, for example, when you are creating some

test messages or perhaps you wish to save sequences of messages for a message processor.

In order to tell QLOAD to read a non-QLOAD file you are given various flavours of the '-n' flag. The existence

of any of the -n flags tells QLOAD that any file parameter should be treated as a non-QLOAD file.

There are essentially two ways to process a non-QLOAD file. Either the file should be treated as a single

message, or the file should be parsed looking for multiple messages (and optionally blocks of property data).

These are both discussed below.

Loading an entire file as a single message

This is clearly the simplest way of reading a non-QLOAD file. The command flag to indicate that the entire file

is a single message is -n1. So, for example the command to load a file 'mymessage.txt' and put it as a single

message would just be the following:

qload -oQ1 -f mymessage.txt -Cd -n1

In this case the entire message will be read and put to the queue as a single message. You may be

wondering what the -Cd parameter is doing. Well, by default QLOAD will try to use 'set all context' so that the

Message Descriptor values match the incoming source values. However, in this case there aren't any

message descriptor values incoming. So, we need to tell QLOAD to use the default context values, hence

-Cd.

Loading multiple messages from a single file

Now, if our file may contain multiple messages it follows that QLOAD needs to be told how to parse the file.

Essentially what are the delimiters for the messages? The simplest scheme one could imagine is that each

line of the file is a separate message and this is indeed the default. The following command will read a file and

put each line of the file as a separate message.

qload -oQ1 -f messages.txt -Cd -nn

Here we have the -n parameter to tell QLOAD that the file is not an actual QLOAD file and we have the single

flag 'n' which says that the delimiters should not be included in the message (which is the default).

Issue this command and the first thing you will see is a message something like the following:

Loading 'messages.txt' : 3 messages found
Do you want to continue? (y/n)

This can be a useful double-check that the file contains what you were expecting. For example if you mistyped

the delimiter values then you might find that the interpreted file contains a significantly different set of

messages. If you enter 'n' at this point then QLOAD will end having done nothing. However, if you enter 'y'

then QLOAD will re-parse the file and put the appropriate messages to the queue.

26

Queue Load / Unload Utility for IBM MQ

Similarly you can load multiple files with the command:

qload -oQ1 -f messages%n.txt -Cd -nn

This will load all the files it finds in the pattern message1.txt, messages2.txt etc.In this case you might see the

following confirmation message:

Loading 'messages1.txt' : 5 messages found
Loading 'messages2.txt' : 8 messages found
Loading 'messages3.txt' : 10 messages found
Loading 'messages4.txt' : 4 messages found
Do you want to continue? (y/n)

If you don't want or need this initial confirmation message (for example if you are running in a script) then you

can bypass it by using the '-nF'. So, the command would be:

qload -oQ1 -f messages.txt -Cd -nF

Note that we don't need the '-nn' flag since not including the delimiters is the default anyway.

Of course having each line of the file being a message can be a little restrictive. Sometimes it would be useful

to be able to specify delimiters for the messages. Let's consider the case where we want to use '<' and '>' to

delimit the messages. So, in the file we have something like this:

<Message 1>
<Message 2>
<Message 3>

To parse this command we need only enter a command such as the following:

qload -oQ1 -f messages.txt -Cd -n"s:<" -n"e:>"

Unfortunately the '<' and '>' characters have special meanings in most shells so we have to enclose them in

quotes to make sure the shell doesn't think we are trying to redirect the output of the program of anything like

that. The exact way you do this may vary by shell but the given command should work in most cases.

If your start delimiter and end delimiter characters have the same number of characters, as in this case, then

you can use a shorthand by specifying them in the same parameter with the -nd flag instead of the -ns and

-ne flags, as shown in the following:

qload -oQ1 -f messages.txt -Cd -n"d:<>"

These commands have not included the delimiters themselves as part of the message content, but if you want

to include them, you can use the -ni flag as shown in the following command:

qload -oQ1 -f messages.txt -Cd -n"id:<>"

The delimiters themselves can be up to 100 characters. So, they could, for example, be XML tags or similar.

27

Queue Load / Unload Utility for IBM MQ

The logical amongst you might realise that the file may now contain characters which do not fall between

these delimiters and wonder what happens to them. Well, the answer is nothing, these characters can be

treated as comments. This allows you to have a file something like the following:

Switch on the porch light
<light 23 on>
Open the driveway gate
<device 14 on>

Such words allow you to annotate your message files which can be useful for documenting the work of the file

or the tests that you are running.

Loading message properties from a delimited file

In addition to supplying delimiters for message content in a non-QLOAD file, you can also have sections of the

file containing message property content. You can supply an additional pair of delimiters and QLOAD will add

the message property content to the message as it is put to the output queue.

Message property content found before each message will be associated with the message when put to the

queue. As an example look at the file content example below:

<usr><Colour>Pink</Colour></usr>
<msg>This is a pink message</msg>
<usr><Colour>Blue</Colour></usr>
<msg>This is a blue message</msg>

This file could be parsed with the following command, where the <usr> tags must be included so that the

MQRFH2 folder is treated as message properties, and in this example, the <msg> tags are not included and

are only present to allow the message text to be correctly parsed in the file, but your text file may be different.

qload -o Q1 -f msg.txt -Cd -n"ns:<msg>" -n"ne:</msg>" -n"ip:<usr>" -n"iq:</usr>"

Issue the above command and you will see output something like this, helping to confirm that you have used,

and QLOAD has found, the correct delimiters and blocks of data in your file.

Loading 'msg.txt' : 2 messages found (2 with properties)

Do you want to continue? (y/n)

Continuing will result in two messages being found and put on queue Q1, with each message containing a

single property named 'Colour' with a different value in each case.

QLOAD takes the data between the tags you supply and adds it to the front of the message in an MQRFH2

folder. If the data is a <usr> folder, then IBM MQ will interpret this as message properties. If any other folder,

then it is just an MQRFH2 folder, so you can use this technique to add any MQRFH2 folder to the front of your

message data as required.

NOTE: The Name Value Data in an MQRFH2 header must always be in ASCII, specifically a Unicode code

page. Please remember this when viewing messages created in this way on z/OS. The text in the

Name Value Data section of the MQRFH2 header has been converted to 1208 before being written to

the message.

28

Queue Load / Unload Utility for IBM MQ

Often you may be copying property data from output that has been formatted. This means you gain a lot of

insignificant white space, which QLOAD will strip by default. In case QLOAD is over-zealous in this removal,

you can use the -nW flag to keep all the white space that is in your input file.

Special Characters
It is possible that your delimiters could contain characters which are not easily given on the command line.

The newline character is one such example. You can, therefore, specify special characters:

• \n Newline characteristics

• \\ Backslash character

• \<decimal number> Character code

For example, you could specify your delimiter such as the following:

qload -oQ1 -f messages.txt -Cd -n"s:\14" -n"e:\15\16"

29

Queue Load / Unload Utility for IBM MQ

Chapter 9. Parameters

There are a number of switch parameters that can be passed to QLOAD to control the behaviour you need.

These are detailed in this chapter.

Parameters Flags
The following parameters can be passed to the program as flags on the command line.

Flag Meaning

-a Controls whether the file is opened in binary or append mode

-aa Append

-ab Binary

-A Allowed the user to override certain message attributes from the original source.

-Ac:<ccsid> Message Codepage

-Ae:<expiry> Message Expiry (in tenths of a second)

-Af:<format> Message Format

-Ap:<priority> Message Priority

-Ar:<ReplyQ> Message Reply Queue and optionally Reply Queue Manager.

-Ar:REPLYQ

-Ar:QM1/REPLYQ

Use of either will set Msg Type to REQUEST

-At:<Msg Type> Message Type: REQUEST, REPLY, DATAGRAM, REPORT

-b Initial message buffer size in Kilobytes (Kb)

-c Controls whether messages taken from a queue are converted

-c < CCSID> [: X ‘Encoding’]

For example -c850:111

-C Context options

-CA Set all context (Default)

-CI Set identity context

-Ca Pass all context

-Ci Pass identity context

-Ct Set all context and update times

-Cd Default context

-Cn No context

Use of the ‘pass’ context options is restricted to cases where the source messages are consumed
from a queue. For a fuller description of context options please see ‘Context Options’ on page 48.

30

Queue Load / Unload Utility for IBM MQ

-d Display options.

In many cases more than one flag can be specified. For example, -dsCM

-da Add ASCII columns to the hex output in the file to aid readability

-dA Write ASCII lines of data wherever possible

-dc Output ApplicationOriginData and ApplicationIdentityData as characters

-dC Display Correlation Id in queue summary

-dH Don’t write file header7

-di Include the message index in the output

-dk Count the messages in the input source (queue or file)

-dK Count the messages in the input source (queue or file) and output only the
resultant number.

-dM Display Message Id in queue summary

-dN Don’t write out the message descriptor content, only the message payload.

-dp Printable character output format8

-dr Write message content as raw bytes

Note that files output in raw mode are not loadable since the message data is
not encoded in any way.

-ds[-] Write a simple summary of the messages found on input

Add '-' after the 's' to suppress the use of Inquire Queue Status in this output.

-dt Text line output format8

-dT Display the time the message has been on the queue

-dw<Length> Set the data width for the output

7Note that files created with this option will not be loadable by QLOAD since it will not recognise the file
format. However, if necessary an appropriate header can be manually added using an editor and then the file
will be loadable.

8 The -dt output format is only suitable for a small range of messages. In particular it is not codepage safe. It
is not recommended that you use this format if you intend to re-load the file to a queue or if your messages
contain non-printable characters.

31

Queue Load / Unload Utility for IBM MQ

-D Add delay, expressed in milliseconds, before writing message to output destination. For really
short delays consider using the -R parameter.

-D <+ve value> Add a fixed delay before putting message

-D500 would put each message half a second apart

-D <-ve value> Add a random delay up to the specified value before putting message

-D-10000 adds a random delay of up to 10 seconds before putting message

-D r <value> Replays the messages at a percentage of their original put speed

-Dr Replays messages at original speed

-Dr50 Replays messages at twice original speed

-Dr200 Replays messages at half original speed

-e This parameter allows message selection based on the content of the message. For a complete
description of message selection please see ‘By Search String’ on page 54.

This parameter may be specified up to 3 times; see Multiple Search Strings for a description.

-E This parameter allows message selection based on the content of the message. For a complete
description of message selection please see ‘By Search String’ on page 54.

This parameter may be specified up to 3 times; see Multiple Search Strings for a description.

-f Specifies either the source or target file name.

For a complete description of the filename format please see ‘File Use’ on page 42.

-F Specifies either the source or target file name. For a target file it forces output to file if it already
exists. The program will not ask whether the file should be overwritten.

For a complete description of the filename format please see ‘File Use’ on page 42.

-g Filter by Message Id, Correlation Id or Group Id

-gc<Value> Get by character Correlation Id

-gm<Value> Get by character Message Id

-gg<Value> Get by character Group Id

-gxc<Value> Get by hex Correlation Id

-gxm<Value> Get by hex Message Id

-gxg<Value> Get by hex Group Id

32

Queue Load / Unload Utility for IBM MQ

-G Get filter options

This parameter adds additional filtering capability. The flag is followed by a letter indicating the
type of filter followed by ':' and possibly a value. The -G flag can be used multiple times

-Gi: Inverse selection

This can be used to inverse the current selection criteria.

This can only be used in cases where QLOAD is doing the filtering.
For example it can not be used to inverse the SQL92 Selector.

-Gr:<Reason Code> Will filter only messages with a Dead Letter Queue header
containing the given reason code.

-Gt:[TargetQm/][TargetQ] Will filter messages which are targeted at the given Queue
Manager and Queue Name. If a Queue Manager or Queue name is
not given then a blank value is matched. The Queue Manager and
Queue names can contain wildcards, e.g. -Gt:*/APP*

-h Strip headers

Any Dead Letter Queue header (MQDLH) or Transmission Queue header (MQXQH) will be
removed from the message before being written.

-H Specifies the SQL92 Message Selector

For example -H "Value > 100"

For more information please see “Selection by SQL92 Selector“ on page 57.

-i Specifies the input queue to browse. The parameter can be specified as many times as you wish
to browse messages from multiple queues.

For example -iQ1 -iQ2 -iQ3

Please see “Generic Unload“ on page 13 to see how multiple queues can be unloaded at once.

-I Specified an input queue to consume messages from. The parameter can be specified as many
times as you wish to consume messages from multiple queues.

For example -IQ1 -IQ2 -IQ3

-j Specifies the MQ log recovery location to process.

This parameter does not apply on z/OS.

For information on the format of this parameter please see Chapter 7 Recovering Messages from
the IBM MQ log on page 23.

33

Queue Load / Unload Utility for IBM MQ

-l Specifies the name of the IBM MQ library to run against. This parameter controls whether the
program runs as a local application or as a client.

-lmqm Local Application

-lmqic Client Application

This parameter does not apply when the program is running on z/OS. You can of course connect
to a z/OS queue manager using this parameter when the program is running on a platform other
than z/OS.

-L Specifies the output file limits. This parameter controls the point at which a new file is generated
by QLOAD when unloading a queue to multiple files.

-La<Age>s|m|h Limit the file age by specifying a maximum file age in seconds (s), minutes (m)
or hours (h).

For example, the file is used for no more than 2 hours:

-La2h

-Ls<Size>b|k|m|g Limit the file size by specifying a maximum file size in bytes (b), kilobytes (k),
megabytes (m) or gigabytes (g).

For example, the file is limited to 500 kilobytes:

-Ls500k

Note there is no guarantee that all files will be below this size. It specifies a
preferred maximum size. For example, it could be possible that a single
unloaded message causes a file to be created that is larger than the provided
limit. In which case, a file will be created that contains just this one message.

-Lm<Number> Limit the file size by specifying a maximum number of messages per file.

For example, the file contains at most 200 messages:

-Lm200

These limits can be combined so that the first limit reached causes a new file to be used.

Use of this parameter requires the use of file index inserts. For a complete description of the
filename format please see ‘File Use’ on page 42.

34

Queue Load / Unload Utility for IBM MQ

-m Specifies the name of the Queue Manager to connect to

For example -m QM1

This parameter can be specified twice in order to provide one queue manager for the input queue
and another different queue manager for the output queue. If this parameter is specified twice
then its relative order in relation to other parameters is important. It must precede the parameter
for the queue it qualifies and additionally the first -m must be the first parameter provided to
QLOAD.

For example -m QM1 -i INPUT.Q -m QM2 -o OUTPUT.Q

Similarly, parameters which qualify the queue manager connection, such as -l (to qualify it as a
client connection) or -u (to provide a connection time user id and password), must be supplied
after the -m for the queue manager in question and before the -m for the second queue manager.

For example -m QM1 -l mqic -u myuserid -i INPUT.Q -m QM2 -o OUTPUT.Q

-n Specifies that the input file is a non-QLOAD file.

Multiple flags can be specified in the same parameter e.g.: -nnFd:<>

-n1 Read the entire file as a single message

-nd:<value> Specifies both start and end message delimiters. eg -nd:<>

-ne:<value> Specifies the end message delimiter. E.g. -ne:>

-nF Specifies than no preliminary message count is needed

-ni Include the delimiters in the message

-nn Do not included the delimiters in the message

-np:<value> Specifies the start property delimiter. E.g. -np:"<usr>"

-nq:<value> Specifies the end property delimiter. E.g. -nq:"</usr>"

-ns:<value> Specifies the start message delimiter. Eg -ns:<

-nW Don't strip white space from properties

-n! Allows the start and end delimiters to be the same

For a fuller description of these options please see ‘Chapter 8. Reading non-QLOAD files’ on
page 26.

35

Queue Load / Unload Utility for IBM MQ

-o Output Queue Name

For example -o Q2

It is also possible to qualify the queue name with the name of the Queue Manager using any of
the characters '/', '\', '#' and ',' as separators, or by specifying your own separator character using
the -$ flag.

For example -o QM2/Q2

The -o parameter can be specified as many times as you like and QLOAD will put messages to
all the destinations.

For example -o Q1 -o Q2 -oQ3

will put the same messages to Q1, Q2 and Q3.

In place of a queue name, you may also specify a destination file which contains the list of queues
you wish to put to.

For example -o file:mydestinations.dst

For more information please see 'Destination File' on page 49.

Wild cards can be used in the Queue name if you are doing a generic load. For more information
see “Generic Load“ on page 17.

-O General Option Flags

-Oa Use Asynchronous put when loading message on to a queue.

This option can yield significant performance benefits when running over an MQ Client.

-OB By default QLOAD will MQINQ the input queue to discover if there is a backout threshold
and a backout re-queue name defined. Use this flag to suppress the MQINQ and thus any
backout processing by QLOAD.

-Oe Open the input queue for exclusive use.

-OF Do not use 'Force MQRFH2' option9

-Oi Print machine and userid information to the screen. Use this command to ensure you
supply the correct information when buying a licence.

-Or Use Read Ahead when getting messages from a queue.

This option can yield significant performance benefits when running over an MQ Client.

-OI Use individual queues instead of distribution lists for multiple destinations.10

-p If set this option will cause the source queue to be purged of messages as they are copied to the
target destination.

9This option is automatically applied if the connected Queue Manager is before Version 7.0
10This option is automatically applied if QLOAD is running on z/OS

36

Queue Load / Unload Utility for IBM MQ

-P Message Priority Message Selection (lowest,highest)

-P 4 Select message with priority >= 4

-P 4,4 Select only messages that are priority 4

-P 2,6 Select message with priority >= 2 and priority <= 6

-P ,6 Select messages with priority <= 6

-q Sets quiet mode. If this flag is set the program will not output it’s usual summary of activity.

-r Sets the applicable message range

-r x Just the ‘x’th message

For example -r10

-r x..y From message ‘x’ to message ‘y’

For example -r 10..20

-r x#y Output ‘y’ messages starting at message ‘x’

-r 100#10

-r#x The first ‘x’ messages

For example -r#100

-R This parameter controls the Require Rate processing.

-R <Message Per Second> [: Duration in seconds]

Required Rate is useful if you would like to inject messages into a queue at a controlled rate. The
messages themselves can be copied or moved depending on whether -i or -I is used. However,
you can not specify a duration if you are moving the messages.

-R 500 Copy messages to target queue at 500 messages per second until end of queue

-R 500:600 Copy messages to target queue at 500 messages per second for 10 minutes

-R *:600 Copy messages to target queue as fast as they are being processed for 10
minutes

-R *:* Copy messages to target queue as fast as they are being processed indefinitely.

For more information please refer to “Chapter 6. Required Rate Processing on page 19.

37

Queue Load / Unload Utility for IBM MQ

-s This parameter allows message selection based on the content of the message. For a complete
description of message selection please see ‘By Search String’ on page 54.

This parameter may be specified up to 3 times; see Multiple Search Strings for a description.

-S This parameter allows message selection based on the content of the message. For a complete
description of message selection please see ‘By Search String’ on page 54.

This parameter may be specified up to 3 times; see Multiple Search Strings for a description.

-t Sets the transaction message limit. For a description of the use of transactions please see
‘Transactions’ on page 47

-T This parameter allows message selection based on time on queue. For a complete description of
the options available please see 'Selection By Time on Queue' on page 55.

-u The userid that should be used for the connection. If a password is not provided, using the -U
parameter, then QLOAD will prompt for the password. See Passing in a Userid & Password on
the connection on page 41 for more details.

On z/OS, QLOAD will only prompt for the password when running in z/OS UNIX, but not when
running in TSO or in Batch from JCL.

-U The password that goes with the userid, -u, parameter.

-v Verbose flags. Flags which controls what additional information QLOAD should output.

-va Display MQI usage

-vd Display the set of output destinations. This can useful when the destinations themselves
have been read from a file.

-vs Display periodic status (based on messages)

The 's' character can be followed by a number. The number indicates after how many
messages the status should be written. For example, to write a status record after every
100 message use the flag -vs100

The default number of messages is 1000.

-vt Display periodic status (based on time)

The 't' character can be followed by a number. The number indicates after how many
seconds the status should be written. For example, to write a status record every minute
use the flag -vs60

Note that the status is only written when a message is sent. If QLOAD is not moving
messages it will not continually be writing out status messages.

The default number of messages is 300 (5 minutes)

Multiple verbose flags can be specified at the same time. For example -vads10

38

Queue Load / Unload Utility for IBM MQ

-w Wait Interval, in seconds, for consuming messages. If specified the program will wait for
messages to arrive, for the specified period, before ending. A value of -1 can be used to indicate
an indefinite wait.

-x This parameter allows message selection based on the content of the message. For a complete
description of message selection please see ‘By Search String’ on page 54.

This parameter may be specified up to 3 times; see Multiple Search Strings for a description.

-X This parameter allows message selection based on the content of the message. For a complete
description of message selection please see ‘By Search String’ on page 54.

This parameter may be specified up to 3 times; see Multiple Search Strings for a description.

-z Message Size Message Selection (smaller,larger)

Message sizes can be specified in bytes, KB or MB

-z 10 Select message of size >= 10 bytes

-z 10K Select message of size >= 10KB

-z 10240,10241 Select message of exactly size 10KB

-z 1K,1M Select messages of size >= 1KB and < 1MB

-z ,10MB Select message of size < 10MB

-$ This parameter allow you to specify which character will be used as a separator between Queue
Manager name and Queue name when providing a fully-qualified queue name for use as the input
or output queue.

39

Queue Load / Unload Utility for IBM MQ

Getting help from the command

There are quite a lot of parameters to remember and it would be nice if QLOAD could prompt your memory.

Well, it can do that in a number of ways.

 All Parameter overview

qload

By entering the command on it's own QLOAD will output the parameters it accepts

 All parameters

qload -?

This command will output all the parameters and information about the options for each parameter.

 Parameter information

qload -d?

This command will give information about the -d parameter

 Parameter search

qload -?file

This command will output any parameter usage text containing the string 'file'

40

Queue Load / Unload Utility for IBM MQ

Connection Methods

You have two connection methods available to you with QLOAD. You can either connect directly to a local

queue manager, or connect using a client connection. The default behaviour is to connect directly to the

queue manager. If you have a default queue manager you can omit the -m switch which provides the queue

manager name.

Connecting as a client

To connect to the Queue Manager via a client the normal IBM MQ client configuration rules apply. The

program can use either the MQSERVER environment variable or the Client Channel Definition Table (CCDT).

The same program can connect both as a local application and as a client. The ‘l’ parameter controls which

IBM MQ library is loaded at runtime, the default being to connect locally.

To run as a local application connecting directly to a local Queue Manager you would use a command such

as:-

qload -m QM1 -iQ1 -fstdout

To run as a client you would use a command such as:-

qload -m QM1 -iQ1 -fstdout -l mqic

Passing in a Userid & Password on the connection

QLOAD supports the userid/password feature provided by IBM MQ in Version 8.0. There are two ways of

using this feature.

You can either pass both the userid and password on the command line such as the following:

qload -m QM1 -iQ1 -fstdout -u myuserid -U mypassword

Or you can just provide the userid. In which case QLOAD will prompt for the password.

qload -m QM1 -iQ1 -fstdout -u myuserid

Queue Load/Unload Utility for IBM MQ
 Version V9.1.1 Build date:Aug 7 2019
 (C) Copyright MQGem Software 2015,2019. (http://www.mqgem.com)

Please enter password for QM(NTPGC1) User(myuserid) >****

Any characters which are typed at the password prompt will be echoed as asterisk (*) characters.

On z/OS, QLOAD will only prompt for the password when running in z/OS UNIX, but not when running in TSO

or in Batch from JCL.

41

Queue Load / Unload Utility for IBM MQ

File Use

As already seen in “Chapter 4. Examples” on page 8, the -f flag is used to indicate the file name.

If the file name contains an asterisk ('*') character it signifies that you wish to do a generic unload or load.

Please see “Chapter 5. Generic Unload and Load“ on page 13 for a description of this feature.

Otherwise messages are targeting a particular file (or group of files). This file may already exist in which case

the program will ask whether you wish to overwrite it or not. If you select not to overwrite the file, no messages

will be unloaded and the utility will end. You can select to overwrite the file when asked this question, or you

can specify that the file to be used should be overwritten if it exists by using the -F (upper case) option as

shown, on the command line.

qload -m QM1 -i Q1 -F c:\myfile

If you wish to combine the messages from two queues into one file, you can use your operating system

services to concatenate the two files together and the format will still be acceptable to QLOAD.

You can also use the -f flag to specify stdout as the output source instead of a file name. This may be

useful if you simply wish to display the messages on the queue to the screen, or pipe the output another

program.

qload -m QM1 -i Q1 -f stdout

Another special value recognised by QLOAD for use in the -f flag is null. This is used to discard the output

and if messages were destructively got from the queue with the -I flag, this would result in them being

discarded from the queue.

qload -m QM1 -I Q1 -f null

z/OS File name format

Specifying the file name on z/OS can be done in a number of different ways. Examples of the most common

are shown here.

To provide the name of a dataset, whether sequential file or partitioned dataset, directly, use the following file

name format (note that this can be fully qualified as in the first example, or will have your TSO user ID (e.g.

GEMUSER) pre-pended to the name in the second example, depending on whether you use the single quotes

or not):

qload -m MQG1 -i Q1 -f"//'GEMUSER.MY.FILE'"

qload -m MQG1 -i Q1 -f"//MY.FILE"

You can provide the name of a member of a partitioned dataset, using the following file name format (bearing

in mind the use of single quotes mentioned above):

qload -m MQG1 -i Q1 -f"//'GEMUSER.MY.PDS(MEMBER)'"

42

Queue Load / Unload Utility for IBM MQ

However, this does not work from within a PARM string in your JCL because of the single quotes, so when

using this from JCL, you must use the following:

EXEC PGM=QLOAD,PARM=('-m MQG1 -i Q1 -f"//''GEMUSER.MY.PDS(MEMBER)''"')

You can also use z/OS UNIX files, as shown in this example.

qload -m MQG1 -i Q1 -f"/u/gemuser/Q1.qld"

You can also use DD cards to identify the data set you wish to use. For example, if you have a DD card

similar to one of the following examples:

//OUTFILE DD DSN=GEMUSER.MY.FILE,DISP=SHR
//OUTFILE DD DSN=GEMUSER.MY.PDS(MEMBER),DISP=SHR

//OUTFILE DD PATH='/u/gemuser/Q1.qld',PATHOPTS=(ORDWR,OCREAT)

you can then use the following:

qload -m MQG1 -i Q1 -fDD:OUTFILE

For more details see “Performing OS I/O Operations” in “z/OS XL C/C++ Programming Guide”.

File Insert Characters

QLOAD is capable of writing and reading to multiple files in a single command. This can be useful if you wish

to unload a queue where each message, or number of messages, goes to a separate file; or if you want to

load multiple files to a queue. To facilitate this a special insert characters can be placed in the file name which

will be replaced with a value when the program runs. Please note that these inserts are not supported, nor

necessary if you are doing a Generic Unload.

Inserts are specified by preceding the character with a ‘%’ character in the file name. For example, using the

command qload -iQ1 -fQ1_Unload_%c will actually write to the file ‘Q1_Unload_061014’. In other words it

will append the date to the file name.

The full list of inserts is as follows:-

Index Inserts

i Input message number

I Input message number padded to 5 characters eg. 00001

o Output message number

O Output message number padded to 5 characters eg.00001

n Current File number

N Current File number padded to 5 characters eg.000001

43

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcpx01/osio.htm

Queue Load / Unload Utility for IBM MQ

Date Inserts

c Current date in YYMMDD format

This format is used to enable the files to be sorted alphabetically. Alternatively a
different date format can be constructed using the inserts below.

C Current date in YYYYMMDD format

d Two digit day of month

dd Day of month including suffix eg.1st, 2nd, 3rd …

j Zero based Julian day of year – January 1st equal ‘000’

J One based Julian day of year – January 1st equal to ‘001’

m Three character month name eg.Jan,Feb,Mar….

mm Two digit month

mmm Full month name eg. January, February,March…

y Four digit year

yy Two digit year

D Three character day of week eg.Mon,Tue,Wed…

DD Full character day of week eg. Monday, Tuesday, Wednesday…

Time Inserts

t Simple time format eg. 181403

H Two digit hour (24 hour clock)

HH Hour (24 hour clock)

h Two digit hour (12 hour clock)

hh Hour (12 hour clock)

M Two digit minutes

S Two digit seconds

P AM/PM

p am/pm

Other Inserts

% The ‘%’ character

Table 1: File insert characters

44

Queue Load / Unload Utility for IBM MQ

File Insert Examples

In the following examples assume that we have a queue called Q1 which contains 10 messages where each

message contains the string which is their message number. Eg. “One”, “Two”,”Three” etc etc

 Adding the current date and time to an output file

qload -m QM1 -iQ1 -f c:\myfile_%c_%t

This will help to ensure you don't over-write a previously created file.

 Writing each message on a queue to a separate file

qload -m QM1 -iQ1 -f c:\myfile%n

Will write each message in Q1 to a separate file myfile1, myfile2, myfile3….

 Writing five messages to each file

qload -m QM1 -iQ1 -f c:\myfile%n -Lm5

Will write each of five messages from Q1 to a separate file myfile1, and myfile2.

 Loading a series of files onto a queue

qload -m QM1 -oQ1 -f c:\myfile%n

Will load the files myfile1, myfile2, myfile3….The loading will stop as soon as a file does not exist.

 Selectively reading messages from a queue

qload -m QM1 -iQ1 -se -f c:\myfile%o

The -se parameter says that only messages containing the character ‘e’ should be written.

Will write each message in Q1 to a separate file myfile1, myfile2, myfile3….

 Selectively reading messages from a queue

qload -m QM1 -iQ1 -se -f c:\myfile%i

The -se parameter says that only messages containing the character ‘e’ should be written.

Will write each message in Q1 to a separate file myfile1, myfile3, myfile5,myfile7….

Note that the %i character is the index of the input message. Consequently the file names

correspond to the message index which caused the file to be written. In this example, therefore you

get the file indexes of the numbers which contain the letter ‘e’.

 Reformatting a selection of files

qload -m QM1 -fInFile%n -da -f -fOutFile%n

This command will read the files, InFile1, InFile2 etc and write them reformatted to files

OutFile1,OutFile2 etc. The program will stop as soon as an input filename is reached which does not

exist. The number of output files will match the number of input files.

45

Queue Load / Unload Utility for IBM MQ

 Reformatting a selection of files containing multiple messages

qload -m QM1 -fInFile%n -da -f -fOutFile%o

This command will read the files, InFile1, InFile2 etc and write them reformatted to files

OutFile1,OutFile2 etc. The program will stop as soon as an input filename is reached which does not

exist. The number of output files will match the number of input messages – that is some of the input

files may have had more than one message contained within them.

Queue access options

As already seen in “Chapter 4. Examples” on page 8, the -o flag is used to indicate the output queue, that is

the queue to which messages are put; the -i and -I flags are used to indicate the input queue, that is the

queue from which messages are browsed or destructively got.

If the messages on the queue being unloaded need to be converted, the -c flag should be used to cause the

MQGET call from the input queue to specify GMO_CONVERT with the CCSID and Encoding values specified.

The encoding value should be specified in hex. Use the following options on the command line.

qload -m QM1 -i Q1 -f c:\myfile -c 850:X’222’

If all that is required is to use the local code page and native encoding then simply use the following options

on the command line.

qload -m QM1 -i Q1 -f c:\myfile -c 0

Backout re-queue Queue

If you define your input queue with a backout re-queue name (BOQNAME) and a non-zero backout threshold

(BOTHRESH), QLOAD will make use of these and copy or move (depending on your input mode) any

messages found on the input queue that have an MQMD.BackoutCount at or above the threshold to the

nominated re-queue queue. In order to do this, QLOAD will inquire the details of the input queue which means

the user id running QLOAD must have authority to inquire the queue. If it does not, QLOAD will report that

backout processing is disabled and continue. If you wish to suppress this inquire authority requirement, or

stop backout processing from happening for any other reason, you can disable it by adding the -OB flag to

your command.

The re-queued message will be put with MQPMO_SET_ALL_CONTEXT to ensure that all the fields in the MQMD

are retained. Please ensure your user id running QLOAD has authority to put to the re-queue queue with “set

all context”. Processing will halt with a failure if it does not.

46

Queue Load / Unload Utility for IBM MQ

Transactions

By default QLOAD will try to do a group of messages in a single transaction in order to improve performance.

However, there is no guarantee that the WHOLE operation will be done in a single transaction. By default the

transaction will be limited to 200 messages. To change this you need to use the -t parameter to say how

many messages can be done in a single transaction.

Option Meaning

-t 0 Switch off transactions all together

-t-1 All messages will be done in a single transaction

-t n
The message operations will be split into groups of n messages, for example -t1000 would

deal with 1000 messages in a single transaction.

Table 2: Transaction flag values

Clearly you can not specify a value larger than the maximum uncommitted messages value for the Queue

Manager and you need to ensure that the Queue Manager log is large enough for your transaction.

Transactions across Queue Managers

QLOAD is capable of copying and moving messages between Queue Managers. It will use transactions to try

and ensure consistency however, since it does not run under a transaction coordinator, it is not a global

transaction. The transaction used for the source Queue Manager is separate to one used for the target Queue

Manager and they are committed separately. The target Queue Manager is always committed before the

source Queue Manager. This means that in the unlikely event of a failure the risk is that messages are

duplicated rather than they are lost.

If you are concerned about the possibility of duplicate messages then messages then you can do the

operation in two stages. First, you copy/move the messages to a holding queue on the target Queue Manager.

If that is successful then you can copy/move the messages to the intended queue. Since this now an

operation involving only a single Queue Manager you know that there will be no duplication.

47

Queue Load / Unload Utility for IBM MQ

Context Options

There are two sets of context information in the Message Descriptor (MQMD), the identity context fields and

the origin context fields. These are described in the IBM Knowledge Center: Message Context. The default

action of QLOAD is to set all the context information in the MQMD to that which was saved in the file being

loaded. This requires the user ID under which the utility is running to have appropriate authority to set all the

context fields.

The context fields can be manipulated in other ways using the various other options with the -C flag. “Table 3:

Context options used by QLOAD” details the options that can be used. The main difference to note is that the

first three options are applicable when loading from a QLOAD format file, and the next two options are

applicable when loading one queue from another queue.

Option Meaning

A Set all the context fields in the MQMD to that which was saved in the file.

t
Set all the context fields in the MQMD to that which was saved in the file apart from PutDate

and PutTime which are set to values reflecting the current time.

I Set only the identity context fields in the MQMD to that which was saved in the file.

a
Pass all the context fields in the MQMD from the messages on the input queue to the

messages on the output queue.

i
Pass only the identity context fields in the MQMD from the messages on the input queue to the

messages on the output queue.

d
Context fields in the MQMD of messages on the output queue will represent the QLOAD

program

n
There will be no information in the Context fields in the MQMD of messages on the output

queue.

Table 3: Context options used by QLOAD

48

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q023110_.htm

Queue Load / Unload Utility for IBM MQ

Destination File

QLOAD supports multiple destinations by allowing repeated specification of the -o parameter. Alternatively, If

you want to put messages to a large number of destinations, then it may be more convenient to specify the

destinations in a file and specify the filename on the -o parameter such as the following:

qload -m QM1 -iQ1 -o file:mydestinations.dst

On z/OS, the file name provided can also be an MVS file name, by using the following format:

qload -m MQG1 -iQ1 -o file:"//'GEMUSER.USER.TEXT(QLIST)'"

Or a DD name, by using the following format:

qload -m MQG1 -iQ1 -o file:DD:QLIST

If the destination file includes further destination files, these can also use the same format.

If you want to keep all the file names in a single piece of JCL, rather than listing them as repeated -o

parameters, consider putting them into an inline DD card as follows:

//PUTMANY EXEC PGM=QLOAD,PARM=('-m MQG1 -i Q1 -o "file:DD:QLIST1"')

//QLIST1 DD *
Q2

Q3
Q4

/*

Destination File Contents

The format of the destination file is very straight forward. For example:

* The file contains queue destinations used by QLOAD
QM1/Q1
QM2/Q2
QM3/Q3

* This is a comment line
MY_LOCAL_QUEUE

* You can even load other files
file:otherdests.dst

As you can see, the destination file can invoke further destination files.

Blank lines and any line starting with an '*' (asterisk) character are ignored. The destinations themselves are

specified one per line.

49

Queue Load / Unload Utility for IBM MQ

Display Options

The default way that your message data is represented in the file is hex data, as follows:

X 000000AE080000010000000400000044000000DF0700000000
X 0000300000004E54314D414820202020202020202020202020

When unloading messages from a queue to a file, or when manipulating a file later, you can specify one of the

display options for your hex and ASCII data. What follows are three example excerpts from the file produced

when using each of these options. The full format of the file is discussed in “Chapter 10: File Format” on page

59. The examples are all shown as post-processing of the file, but the options can also be used when

unloading a queue to a file.

Combination of Hex and ASCII data

Use the following options on the command line.

qload -f c:\oldfile -f c:\newfile -da

This will produce a file that shows the hex values of your message data on the left and any displayable

characters on the right.

X 000000AE080000010000000400000044000000DF0700000000
<...............D.........>
X 0000300000004E54314D414820202020202020202020202020 <..0...NT1MAH
>

Interleaved Hex and ASCII data

Use the following options on the command line.

qload -f c:\oldfile -f c:\newfile -dA

This will produce a file that shows ASCII text whenever the data is displayable and hex values otherwise.

X 000000AE0800000100000004000000

S "D"
X 000000DF07000000000000

S "0"
X 000000

S "NT1MAH "

50

Queue Load / Unload Utility for IBM MQ

Message Index

Use the following options on the command line.

qload -m QM1 -i Q1 -f c:\myfile -di

This will add a comment line at the beginning of each message to show the index of the message.

* Index 1
A RPT 0

This is just a comment and is useful for determining which message you are looking at in the file. If you

concatenate two files together, or edit the file to remove some of the messages, then the indexing will no

longer be correct. Use the following options on the command line to re-index a file after it has been edited.

qload -f c:\oldfile -f c:\newfile -di

Message Age

Use the following options on the command line.

qload -m QM1 -i Q1 -f stdout -dT

This will display the ages of the messages on the queue.

1. MsgId:414D51204E545047433120202020202006A937452000A905
 6 hours 16 minutes 51 seconds
2. MsgId:414D51204E545047433120202020202006A937452000D204
 35 minutes 26 seconds

If required message selection can be performed based on the ages of the messages. Please see “Message

Selection : Multiple Search Strings” on Page 54.

51

Queue Load / Unload Utility for IBM MQ

Display Summary

You can obtain a summary of the contents of your queue, by using the -ds option. This will provide you with

details of the ages of messages on your queue, including the age of the youngest and oldest message, and

the average message age. It will also provide you with details of the sizes of messages on your queue, along

with the size of the smallest and biggest message, and the average message size. Here is some example

output to illustrate.

Message Ages
============

< 2 secs < 10 secs < 1 min < 1 hour < 1 day < 1 week
--------- --------- --------- --------- --------- ---------
 0 0 0 0 0 27

< 2 weeks < 4 weeks < 3 month < 6 month < 1 year > 1 year
--------- --------- --------- --------- --------- ---------
 0 0 0 0 0 2

Youngest Message : 3 Days 10 Hrs 9 Mins 1 Sec
Oldest Message : 224 Weeks 5 Days 3 Hrs 54 Mins 58 Secs
Average Message : 15 Weeks 6 Days 16 Hrs 20 Mins 27 Secs

Message Sizes
=============

< 100B < 1KB < 4KB <100KB < 1MB < 10MB < 50MB > 50MB
------ ------ ------ ------ ------ ------ ------ ------
 0 18 11 0 0 0 0 0

Smallest Message : 408 bytes
Biggest Message : 2.0 KBs
Average Message : 924 bytes

Queue Size Summary
==================
 Current Maximum Full
 --------- --------- -------
Messages 29 999999999 0.0 %
Message Bytes 26.19 KBs 1.99 TBs 0.0 %
Data Bytes 36.50 KBs 1.99 TBs 0.0 %
Queue File Size 1 MB 1.99 TBs 0.0 %

You can add -dC and -dM to this command to see the correlation ID and message ID of the messages at the

extreme ends of age and size in this report.

In the “Queue Size Summary”, if your queue manager does not support the Current Queue File Size

parameter in Inquire Queue Status, either due to platform or version, or your user ID does not have the

authority to issue the Inquire Queue Status command, then the last two rows will be omitted, and the

Maximum value in the “Message Bytes” row will be calculated as Max Depth x Max Msg Length.

Counting messages

If you have need to count the numbers of messages that meet criteria not covered by the above summary

display, you can using the counting option -dk (or -DK). You can use any filters, search strings or time based

criteria that QLOAD offers, and then instead of moving/copying the messages that match to a queue or file,

QLOAD will instead simply count them and tell you how many. This can run in two modes, -dk which is

verbose enough to show you the selection criteria in effect and the summary output at the end, and -dK which

very simply writes the count to stdout and outputs nothing else to the screen.

52

Queue Load / Unload Utility for IBM MQ

Summary Output

Once QLOAD has completed executing the command with the options you have specified, it will output a

summary of what it did, for example:

Read - Files 1 Messages: 1 Bytes: 15
Written - Files 0 Messages: 1 Bytes: 15

To suppress this summary, use the quiet option, -q, as follows:-

qload -m QM1 -o Q1 -f c:\myfile -q

Message Selection

When using QLOAD to move or copy messages, or even just to manipulate the file that was produced from by

unloading a queue, it may be only necessary to work with some of the messages. This can be done by

selecting specific messages to process in two different ways. You can either select messages by a numeric

range, or you can select messages that contain a specific string.

Selection By Message Range

Indexing the file as described in “Message Index” on page 51, may be useful when working with ranges. You

can choose to process a certain range of messages from the input source (this may be a queue or a file) in a

number of different ways, which are shown in “Table 4: Message range options used by QLOAD”.

Option Meaning
x Process message number x only.

x..y Process message number x through y only

x#y Process y messages starting from message x

#y Process y messages starting from the beginning.

Note: This is the same as 1#y

Table 4: Message range options used by QLOAD

Here are examples of some of the options. To illustrate the difference between x..y and x#y, we have a file

with 10 messages in it. In order to load messages 2 through 7 inclusive onto our queue we could use either of

the following options on the command line.

qload -m QM1 -o Q1 -f c:\myfile -r2..7

qload -m QM1 -o Q1 -f c:\myfile -r2#6

In both cases QLOAD will let you know which messages you are processing with output similar to the

following.

Queue Load/Unload Utility for IBM MQ
Message Selection Active
 Message indexes 2 -> 7.

53

Queue Load / Unload Utility for IBM MQ

Selection By Search String

You can choose to process only messages that contain a certain string. This string can be in ASCII, EBCDIC

or hex.

Use the following options on the command line to only process those messages that contain the ASCII string

‘SALES’.

qload -m QM1 -i Q1 -f c:\SalesFile -s SALES

You can also do the opposite search - that is for messages that do not contain a certain string. This can be

done using the upper case version of the option, for example, to only process those messages that do not

contain the EBCDIC string ‘SALES’.

qload -m QM1 -i Q1 -f c:\SalesFile -E SALES

The table below lists all the search options that can be used with QLOAD.

Search containing this string Search not containing this string

ASCII Search Options s (lower case) S (upper case)

EBCDIC Search

Options

e (lower case) E (upper case)

Hex Search Options x (lower case) X (upper case)

Table 5: Search string options used by QLOAD

You can use any combination of the search string options together. If more than one option is used, all search

strings must match for the message to be processed. Use the following options on the command line to only

process those messages that contain the ASCII string ‘SALES’ and do not contain the hex string ‘F0F1F2’.

qload -m QM1 -i Q1 -f c:\SalesFile -s SALES -X F0F1F2

On ASCII platforms (Linux, UNIX and Windows) use the -s option to search for a natively encoded string; on

EBCDIC platforms (z/OS) use the -e option to search for a natively encoded string.

Multiple Search Strings

Up to 3 of each search string may be specified. If multiple strings are used then they are treated as follows:

• Positive search strings

When multiple positive strings are used then all strings must be present for the search to match. For

example the command qload -iMATCH -s LIVERPOOL -s CHELSEA will only return messages

which contain both strings.

• Negative search strings

When multiple negative strings are used then none of the strings must be present for the search to

match. For example the command qload -IMATCH -S HOME -S DRAW will only return messages

which contain neither string.

54

Queue Load / Unload Utility for IBM MQ

Selection By Time on Queue

QLOAD supports two different ways of specifying a message selection based on the time a message has

been on the queue. These are 'the message age' and the 'put time-stamp'.

We will discuss these separately in the next two sub-sections.

Selection by Message Age

You can choose to process only messages older than a certain time interval using the -T flag. Time interval

can be specified in Days, Hours and Minutes. The general format being [days:]hours:]minutes. The

parameter can take one or two times, -T [OlderThanTime][,YoungerThanTime]. This is clearly very useful if

you want to select messages based on a relative, rather than absolute, time.

For example, here are a number of commands and their effect :-

 Display messages older than 5 minutes.

qload -m QM1 -i Q1 -fstdout -T5

 Display messages younger than 5 minutes.

qload -m QM1 -i Q1 -fstdout -T,5

 Display messages older than 1 day but younger than 2 days.

qload -m QM1 -i Q1 -fstdout -T1:0:0,2:0:0

 The following command will copy messages older than 1 hour from Q1 to Q2.

qload -m QM1 -i Q1 -o Q2 -T1:0

 The following command will move messages older than 1 week. from Q1 to Q2

qload -m QM1 -I Q1 -o Q2 -T7:0:0

The -T flag can be combined with the -dT flag to determine whether there are messages older than a certain

elapsed time on the queue without actually printing the contents of the message.

55

Queue Load / Unload Utility for IBM MQ

Selection by put time-stamp

If the relative time provided by message age selection is not suitable you can also specify absolute

timestamps. You can specify a 'from' time and a 'to' time. The 'from' time selects any message put after that

time. The 'to' time selects messages put before that time. Each time-stamp uses a different -T parameter. The

time-stamp itself can consist of just the date portion, just the time portion or both. If the date is not specified

then today’s date is assumed. If the time is not specified then mid-night is assumed. The time-stamp defaults

to local time but can be specified in UTC time if required.

The full format of the time-stamp is : [f | t][u][DD/MM/YYYY][_][HH:MM | HH:MM:SS]

Characters Meaning

f Specifies a 'from' date or put at or after this time

t Specifies a 'to' date or put before this time

u Specifies that the time-stamp should be treated as UTC

DD/MM/YYYY Specifies the date. If not set the today is assumed

HH:MM Specifies the time. If not set then mid-night is assumed

HH:MM:SS Specifies the time including seconds. If not set then mid-night is assumed

Here are a few examples of using this parameter.

 display messages that were put today

qload -m QM1 -i Q1 -fstdout -Tf00:00

 display messages that were put on New Years Day 2015

qload -m QM1 -i Q1 -fstdout -Tf01/01/2015 -Tt02/01/2015

 display messages that were put before New Years Day 2015

qload -m QM1 -i Q1 -fstdout -Tt01/01/2015

 display messages that were put after a particular UTC time

qload -m QM1 -i Q1 -fstdout -Tfu04/07/2015_10:45:33

56

Queue Load / Unload Utility for IBM MQ

Selection by SQL92 Selector

IBM MQ provides a flexible selector string which can be used to control, to a fairly fine detail, the messages

which are returned from an MQGET call11. It is beyond the scope of this document to explain in detail the

syntax and full capabilities of the SQL92 selector but we'll give a few examples. Essentially the SQL92

selector allows you to construct a boolean expression using mathematical operators which allows you to

select against message properties as well as the standard message descriptor. It is therefore possible to write

selectors of significant complexity which makes them very powerful. For a full description of the SQL92 syntax

please see IBM Knowledge Center: Message selector syntax.

This can, at first glance, seem a little daunting so let's look at a few examples.

 display only persistent messages

qload -m QM1 -i Q1 -fstdout -H "Root.MQMD.Persistence = 1"

 display only reply messages

qload -m QM1 -i Q1 -fstdout -H "Root.MQMD.MsgType = 2"

 display messages that were put by a particular user12

qload -m QM1 -i Q1 -fstdout -H "Root.MQMD.UserIdentifier = 'Paul '"

Notice that you need to pad the string field with blanks if you make an exact comparison.

 display messages that contain a user property value

qload -m QM1 -i Q1 -fstdout -H "CustomerNumber = 123"

 display messages with a particular Correlation ID value (Windows)

qload -m QM1 -i Q1 -fstdout

-H "Root.MQMD.CorrelId=""0x414D51204D5138303420202020202020D973DF572000C274"""

display messages with a particular Correlation ID value (Linux - bash)

qload -m QM1 -i Q1 -fstdout

-H "Root.MQMD.CorrelId=\"0x414D51204D5138303420202020202020D973DF572000C274\""

The main problem in this example is the different ways to input the double-quote inside the command

string in different shells.

Of course, you could also do this using the following command and avoid using the SQL92 selector

altogether, but it does make a useful illustration of using multiple sets of double quotes in a command.

qload -m QM1 -i Q1 -fstdout

-gxc414D51204D5138303420202020202020D973DF572000C274

11Only available when running against a version of IBM MQ which supports selectors.
12Here we have an example of a quoted string inside a quoted string. Note that the exact syntax may vary between
Operating Systems and Shells. If you have problems consult your shell user guide.

57

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q023010_.htm

Queue Load / Unload Utility for IBM MQ

Purge non-selected messages

In addition to using message selection, as described above, to control which messages get copied or moved,

you may also need to purge those messages that do not match the message selection criteria when moving

several messages13. This is best illustrated by an example.

Let’s start with queue Q1 containing messages with the following message data, and Q2, which is empty.

one potato
two potato
three potato
four
five potato
six potato
seven potato
more

We use the following command:

qload -m QM1 -I Q1 -o Q2 -s potato

This would leave Q1 containing the following messages

four
more

and would move the following messages to Q2

one potato
two potato
three potato
five potato
six potato
seven potato

However, if we want to ensure that when moving those messages to Q2, any messages that do not match are

also removed from the source queue, Q1, then we must use the following command:

qload -m QM1 -I Q1 -o Q2 -s potato -p

13This option is not supported when using SQL92 Selector string since the selection is being done in the Queue Manager
not in the QLOAD program.

58

Queue Load / Unload Utility for IBM MQ

Chapter 10. File Format

The format of the file that QLOAD uses is deliberately human-readable to allow a user to update the file to

easily make changes to the messages before loading them onto a queue, perhaps on a different system. After

introducing the basic format of the file, this chapter gives an example to illustrate a possible field that you may

wish to update, and then provides a reference to the full file format.

The file has a free format. Spaces and blank lines are ignored unless between quotes. QLOAD will add

spaces to make the file more readable, but they do not affect the message format stored in that file.

The first column contains the key for each line. This can have a number of different values, some of which we

have seen already. These are listed in “Table 6: Meaning of column one symbol in file format”.

Column 1 value Meaning

S The text shown on this line is ASCII string text

X The text shown on this line is hex

A The text shown on this line is an attributed in the Message Descriptor (MQMD)

N This line represents a ‘missing’ MQMD definition. Is it output when -dN option is used

T The text shown on this line is ASCII string text and is followed by a newline character

* The text on this line is a comment and will be ignored.

Table 6: Meaning of column one symbol in file format

The second column should contain a blank; this makes the file more readable.

If the first column contained the letter ‘A’, then the next three characters will represent the field that is being

shown. For example, ‘FMT’ shows that this line displays the format of the message. The full set of these field

labels is listed at the end of this chapter.

Example - Changing the user ID

The message descriptor (MQMD) contains a user ID which, depending on your security settings, may be used

for access control when putting a message onto a queue. You may wish to change this user ID before

reloading the messages onto a queue on a different system because the IDs on that system use a different

naming convention. Before loading the queue from your file of messages, you would edit the file changing the

field identified as USR to your desired user ID.

:
A RTM MQ24
A USR HUGHSON
A ACC 1A0FD4D8F2F4C3C8C9D5F1F9C6F7C1C3F3F00019F7AC30000000000000000000
:

59

Queue Load / Unload Utility for IBM MQ

Attribute Format Reference

The fields in the Message Descriptor (MQMD) are formatted in the file with a three character string

representing the attribute name. “Table 7: Message descriptor attribute representations” lists the full set of

these strings and which field they represent.

Message Descriptor attribute File format representation

Report RPT

MsgType MST

Expiry EXP

Feedback FBD

Encoding ENC

CodedCharSetId CCS

Format FMT

Priority PRI

Persistence PER

MsgId MSI

CorrelId COI

BackoutCount BOC

ReplyToQ RTQ

ReplyToQMgr RTM

UserIdentifier USR

AccountingToken ACC

ApplIdentityData AID

ApplIdentityData (HEX) AIX

PutApplType PAT

PutApplName PAN

PutDate PTD

PutTime PTT

ApplOriginData AOD

ApplOriginData (Hex) AOX

Table 7: Message descriptor attribute representations

Recognised file formats

QLOAD recognises the above described file format, but also recognises the file format used as output from

the sample browse program AMQSBCG.

60

Queue Load / Unload Utility for IBM MQ

Chapter 11. Migrating from previous versions

We always try to ensure that, as each version is shipped, all the features that were working on the previous

versions remain intact. When installing a new version we always recommend you backup the previous

QLOAD program.

If you do find a problem then please send us a problem report and we will try to fix your issue as soon as

possible.

Changes made in Version 9.1.0

The main changes from the previous version the utility were:

1. Reading non-QLOAD files

QLOAD is now capable of reading a file that was not created by QLOAD but contains a set of user created

messages.

For more information please see 'Chapter 8. Reading non-QLOAD files' on page 26.

Changes made in Version 9.0.3

The main changes from the previous version the utility were:

1. Recovering messages from IBM MQ log files

QLOAD is now capable of piecing together messages from the output of the DMPMQLOG command and

putting the resulting messages to an MQ queue.

For more information please see 'Chapter 7. Recovering Messages from the IBM MQ log on page 23.

Changes made in Version 9.0.2

The main changes from the previous version the utility were:

1. Required Rate Processing

QLOAD can now be used to move or inject a workload into your system at a defined rate using the -R

parameter. For example qload -iSOURCE -oTARGET -R500 will copy messages from SOURCE to

TARGET at a rate of 500 messages per second.

For more information please see 'Chapter 6. Required Rate Processing' on page 19.

61

Queue Load / Unload Utility for IBM MQ

Changes made in Version 9.0.1

1. Generic unload/reload

It is now possible to unload all messages from a Queue Manager with a single command. For example,

the command qload -i* -f* will unload all queues and write the messages to files, one file per queue.

Similarly the command qload -o* -f* will reload the messages back again.

For more information please refer to “Chapter 5. Generic Unload and Load“ on page 13.

2. Extra filtering capability

You can ask QLOAD to filter based on the target queue found in a Dead Letter Queue or Transmission

Header.

Changes made in Version 9.0.0

1. File Limits

You can unload a queue to multiple files, specifying limits to control the size of each of the multiple files.

These limits can be specified as the maximum age of the file; the maximum file size; or the maximum

number of messages in the file. These limits can be combined so that the first limit reached causes a new

file to be used.

2. Multiple queue manager connections

If you need to move or copy messages from one queue manager to another, you can specify the -m

parameter more than once, telling QLOAD to make a connection to each queue manager.

3. Consuming from multiple queues

It is not possible to specify the -i and -I parameters multiple times if you wish to copy/move messages off

multiple queues.

4. Null file destination

QLOAD can unload a queue to a null file destination, thus discarding the messages from the queue.

Changes made in Version 8.0.2

1. Multiple Target Queues

It is now possible to target multiple MQ queues and these can now be qualified by Queue Manager name.

This means that QLOAD can now be used as a queue replicator.

2. Destination File

If you have a large number of queues you wish to distribute messages to it can be more convenient to put

the names of the queues in a file and just refer to that file. This is now possible in QLOAD with the

Destination file.

3. New Verbose Options

QLOAD can now print out periodic status messages to inform the user how far it has got through

processing. Other verbose options include printing out the MQI verbs being used, and the list of

destinations.

62

Queue Load / Unload Utility for IBM MQ

Changes made in Version 8.0.1

The main changes from the previous version the utility were:

1. Built on older versions of Unix

It should now be possible to run the latest version of QLOAD, with all it's features, on older versions of

Unix.

2. Multi-version Support

QLOAD will load the MQ libraries from the place identified by setmqenv.

3. Allow Message Selection based on a time-stamp

For a long time QLOAD has enabled you to select messages based on age. However, now you can select

based on an absolute time-stamp. So, you can now easily select those messages put 'last week', or

yesterday.

4. Allow Message Selection based on Message Size

Have you ever wanted to get rid of those 'large' messages? Well now it's easy.

5. Allow Message Selection based on Message Priority

You can now easily remove all the low or high priority messages from a queue.

6. Allow Message Selection based on SQL92 Selection String

The IBM MQ product allows messages to be got based on an SQL92 selection string that allows you to

write sophisticated selection criteria. QLOAD now allows you to use these selection strings.

7. Client Performance options

You can now explicitly state that you wish QLOAD to use Read Ahead or Async Put. This can increase

the speed of QLOAD quite significantly when run over client connections.

8. New help features

To make it easier to find the option you are looking for

9. General Bug fixes

Sadly software bugs are a fact of life, this version has fixed all those reported to me.

63

End of document

MQGem Software Limited

www.mqgem.com

http://www.mqgem.com/

	Notices
	Table of Contents
	History
	SupportPac
	MQGem Product

	Chapter 1. Queue Load / Unload Utility for IBM MQ
	Overview
	Changes from previous version
	Installation
	Linux, Unix and Windows
	Unix Compatibility

	z/OS Installation Instructions
	z/OS UNIX Installation Instructions

	Chapter 2. Licensing
	Userid and Machine Information
	Licence File Location
	Multiple licences
	Licence Renewal
	Changing your licence file

	Chapter 3. Introduction
	Uses
	Filtering

	Chapter 4. Examples
	Example 1. Unload a Queue to a File
	Example 2. Unload a Queue to a series of files
	Example 3. Load a Queue from a File
	Example 4. Load a Queue from a series of files
	Example 5. Copy the messages from one Queue to another Queue
	Example 6. Move messages from multiple Queues to another Queue
	Example 7. Copy the first 100 messages from one Queue to another Queue
	Example 8. Move the messages from one Queue to another Queue
	Example 9. Move messages older than one day from one Queue to another Queue
	Example 10. Work with the file of messages
	Example 11. Display the ages of messages currently on a Queue
	Example 12. Put messages to more than one queue
	Example 13. Put messages to a list of queues in a file
	Example 14. Generic Unload
	Example 15. Generic load
	Example 16. Required Rate Processing
	Example 17. Required Rate Indefinite Processing
	Example 18. Loading from a non-QLOAD file

	Chapter 5. Generic Unload and Load
	Generic Unload
	File location
	File Location on z/OS

	Generic File Name Format
	File limits
	Case sensitivity
	The / character
	File Type

	Generic Load

	Chapter 6. Required Rate Processing
	Unlimited Rate Processing

	Chapter 7. Recovering Messages from the IBM MQ log
	General recovery syntax
	QLOAD processing a DMPMQLOG output file
	QLOAD issuing the DMPMQLOG command

	Performance

	Chapter 8. Reading non-QLOAD files
	Loading an entire file as a single message
	Loading multiple messages from a single file
	Loading message properties from a delimited file
	Special Characters

	Chapter 9. Parameters
	Parameters Flags
	Getting help from the command
	Connection Methods
	Connecting as a client
	Passing in a Userid & Password on the connection

	File Use
	z/OS File name format

	File Insert Characters
	File Insert Examples

	Queue access options
	Backout re-queue Queue
	Transactions
	Transactions across Queue Managers

	Context Options
	Destination File
	Destination File Contents

	Display Options
	Combination of Hex and ASCII data
	Interleaved Hex and ASCII data
	Message Index
	Message Age
	Display Summary
	Counting messages

	Summary Output
	Message Selection
	Selection By Message Range
	Selection By Search String
	Multiple Search Strings
	Selection By Time on Queue
	Selection by Message Age
	Selection by put time-stamp

	Selection by SQL92 Selector
	Purge non-selected messages

	Chapter 10. File Format
	Example - Changing the user ID
	Attribute Format Reference
	Recognised file formats

	Chapter 11. Migrating from previous versions
	Changes made in Version 9.1.0
	Changes made in Version 9.0.3
	Changes made in Version 9.0.2
	Changes made in Version 9.0.1
	Changes made in Version 9.0.0
	Changes made in Version 8.0.2
	Changes made in Version 8.0.1

